Kinesins support many diverse cellular processes, including facilitating cell division through mechanical regulation of the mitotic spindle. However, how kinesin activity is controlled to facilitate this process is not well understood. Interestingly, posttranslational modifications have been identified within the enzymatic region of all 45 mammalian kinesins, but the significance of these modifications has gone largely unexplored. Given the critical role of the enzymatic region in facilitating nucleotide and microtubule binding, it may serve as a primary site for kinesin regulation. Consistent with this idea, a phosphomimetic mutation at S357 in the neck-linker of KIF18A alters the localization of KIF18A within the spindle from kinetochore microtubules to nonkinetochore microtubules at the periphery of the spindle. Changes in localization of KIF18A-S357D are accompanied by defects in mitotic spindle positioning and the ability to promote mitotic progression. This altered localization pattern is mimicked by a shortened neck-linker mutant, suggesting that KIF18A-S357D may cause the motor to adopt a shortened neck-linker-like state that decreases KIF18A accumulation at the plus-ends of kinetochore microtubules. These findings demonstrate that posttranslational modifications in the enzymatic region of kinesins could be important for biasing their localization to particular microtubule subpopulations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10881168 | PMC |
http://dx.doi.org/10.1091/mbc.E23-05-0167 | DOI Listing |
J Mater Chem B
January 2025
Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain.
Diabetes remains one of the most prevalent chronic diseases globally, significantly impacting mortality ratetables. The development of effective treatments for controlling glucose level in blood is critical to improve the quality of life of patients with diabetes. In this sense, smart optical sensors using hydrogels, responsive to external stimuli, have emerged as a revolutionary approach to diabetes care.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan, China.
Endophytic fungi associated with selected aquatic plants, and were evaluated. sp. nov.
View Article and Find Full Text PDFHum Brain Mapp
February 2025
Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, New York, USA.
Iron in the brain is essential to neurodevelopmental processes, as it supports neural functions, including processes of oxygen delivery, electron transport, and enzymatic activity. However, the development of brain iron before birth is scarcely understood. By estimating R2* (1/T2*) relaxometry from a sizable sample of fetal multiecho echo-planar imaging (EPI) scans, which is the standard sequence for functional magnetic resonance imaging (fMRI), across gestation, this study investigates age and sex-related changes in iron, across regions and tissue segments.
View Article and Find Full Text PDFPlant Physiol
January 2025
The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao 266237, China.
Proteins with Toll/interleukin-1 receptor (TIR) domains are widely distributed in both prokaryotes and eukaryotes, serving as essential components of immune signaling. Although monocots lack the major TIR-nucleotide-binding (NB)-leucine-rich repeat (LRR)-type (TNL) immune receptors, they possess a small number of TIR-only proteins, the function of which remains largely unknown. In the monocot maize (Zea mays), there are three conserved TIR-only genes in the reference genome, namely ZmTIR1 to ZmTIR3.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Chamilpa, 62210 Cuernavaca, Morelos, Mexico. Electronic address:
Levan, a β(2 → 6) linked D-fructofuranosyl polymer, is gaining significant attention in basic and applied research. It has been demonstrated that most properties are related to levan molecular weight but also its β(2 → 1) branching degree. In this paper the relationship between levan branching degree, particle size, and molecular weight is reviewed, exploring also how these structural parameters influence levan susceptibility to exo- and endolevanase hydrolysis for levans produced by three recombinants bacterial levansucrases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!