Background And Purpose: Cerebral infarction in the basal ganglia may cause secondary and delayed neuronal degeneration in the substantia nigra (SN). However, the clinical significance of SN degeneration remains poorly understood.
Methods: This retrospective observational study included patients with acute ischemic stroke in the basal ganglia on initial diffusion-weighted imaging who underwent follow-up diffusion-weighted imaging between 4 and 30 days after symptom onset. SN degeneration was defined as a hyperintensity lesion in the SN observed on diffusion-weighted imaging. We compared functional outcomes at 3 months between patients with and without SN degeneration. A poor outcome was defined as a score of 3-6 (functional dependence or death) on the modified Rankin Scale.
Results: Of 350 patients with basal ganglia infarction (median age = 74.0 years, 53.7% male), 125 (35.7%) had SN degeneration. The proportion of functional dependence or death was 79.2% (99/125 patients) in patients with SN degeneration, which was significantly higher than that in those without SN degeneration (56.4%, 127/225 patients, p < 0.001). SN degeneration was more frequent in patients with functional dependence or death (99/226 patients, 43.8%) than in those with functional independence (26/124 patients, 21.0%, p < 0.001). Multivariable logistic regression analysis showed a significant association between SN degeneration and functional dependence or death (odds ratio = 2.91, 95% confidence interval = 1.17-7.21, p = 0.021).
Conclusions: The study showed that patients with degeneration of SN were associated with functional dependence or death at 3 months, suggesting that secondary degeneration is a predictor of poor stroke outcomes and a potential therapeutic target.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10841447 | PMC |
http://dx.doi.org/10.1111/ene.16111 | DOI Listing |
Dis Model Mech
January 2025
Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
Gsx2 is a homeodomain transcription factor critical for development of the ventral telencephalon and hindbrain of the mouse. Loss of Gsx2 function results in severe basal ganglia dysgenesis as well as defects in the nucleus tractus solitarius (nTS) of the hindbrain together with respiratory failure at birth. De Mori et al.
View Article and Find Full Text PDFBrain Commun
January 2025
Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA.
The subthalamic nucleus is thought to play a crucial role in controlling impulsive actions. Networked among the basal ganglia and receiving input from several cortical areas, the subthalamic nucleus is well positioned to influence action selection when faced with competing and conflicting action outcomes. The purpose of this study was to test the dissociable roles of the dorsal and ventral aspects of the subthalamic nucleus during action conflict in patients with Parkinson's disease undergoing intraoperative neurophysiological recording and to explore a potential mechanism for this inhibitory control.
View Article and Find Full Text PDFRinsho Shinkeigaku
January 2025
Department of Neurology, Gifu Prefectural General Medical Center.
A 49-year-old female presented with the primary complaint of hand tremors. Neurological examination on admission revealed signs of cognitive impairment, bulbar palsy, dystonia, cerebellar ataxia, and pyramidal tract disease. T-weighted brain MRI revealed hyperintense signals in the subcortical white matter, basal ganglia, and cerebellar dentate nucleus, with no atrophy of the brainstem or corpus callosum.
View Article and Find Full Text PDFPsychiatr Clin North Am
March 2025
Department of Neurology, Johns Hopkins University School of Medicine, Kennedy Krieger Institute, Baltimore, MD, USA.
The pathophysiology of tic disorders involves an alteration in the transmission of messages through the cortico-basal ganglia-thalamo-cortical circuit. A major requirement for the passage of a message through this circuit is an intact chemically mediated synaptic neurotransmitter system (ie, neurotransmitters and second messengers). This article reviews the scientific evidence supporting the involvement of a variety of neurotransmitters (ie, dopamine, glutamate, gamma-aminobutyric acid, serotonin, acetylcholine, and the opioid system).
View Article and Find Full Text PDFPsychiatr Clin North Am
March 2025
Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Kennedy Krieger Institute, Baltimore, MD, USA.
The underlying pathophysiology of tics in Tourette syndrome is a topic of major scientific interest. To date, there is an absence of consensus among researchers regarding the precise anatomic location responsible for tics. The goal of this article is to review the current understanding of these brain circuits and data supporting specific anatomic regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!