Transcriptome-wide association studies (TWAS) have identified many putative susceptibility genes for colorectal cancer (CRC) risk. However, susceptibility miRNAs, critical dysregulators of gene expression, remain unexplored. We genotyped DNA samples from 313 CRC East Asian patients and performed small RNA sequencing in their normal colon tissues distant from tumors to build genetic models for predicting miRNA expression. We applied these models and data from genome-wide association studies (GWAS) including 23 942 cases and 217 267 controls of East Asian ancestry to investigate associations of predicted miRNA expression with CRC risk. Perturbation experiments separately by promoting and inhibiting miRNAs expressions and further in vitro assays in both SW480 and HCT116 cells were conducted. At a Bonferroni-corrected threshold of P < 4.5 × 10-4, we identified two putative susceptibility miRNAs, miR-1307-5p and miR-192-3p, located in regions more than 500 kb away from any GWAS-identified risk variants in CRC. We observed that a high predicted expression of miR-1307-5p was associated with increased CRC risk, while a low predicted expression of miR-192-3p was associated with increased CRC risk. Our experimental results further provide strong evidence of their susceptible roles by showing that miR-1307-5p and miR-192-3p play a regulatory role, respectively, in promoting and inhibiting CRC cell proliferation, migration, and invasion, which was consistently observed in both SW480 and HCT116 cells. Our study provides additional insights into the biological mechanisms underlying CRC development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10840382PMC
http://dx.doi.org/10.1093/hmg/ddad185DOI Listing

Publication Analysis

Top Keywords

transcriptome-wide association
8
colorectal cancer
8
association studies
8
crc risk
8
east asian
8
mirna expression
8
large-scale microrna
4
microrna transcriptome-wide
4
association study
4
study identifies
4

Similar Publications

Shared genetic architecture of type 2 diabetes with muscle mass and function and frailty reveals comorbidity etiology and pleiotropic druggable targets.

Metabolism

December 2024

Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:

Background: Delineating the shared genetic architecture of type 2 diabetes with muscle mass and function and frailty is essential for unraveling the common etiology and developing holistic therapeutic strategies for these co-existing conditions.

Methods: In this genome-wide pleiotropic association study, we performed multi-level pairwise trait pleiotropic analyses using genome-wide association study summary statistics from up to 461,026 European ancestry individuals to dissect the shared genetic factors and causal relationships of type 2 diabetes and seven glycemic traits with four muscle mass- and function-related phenotypes and the frailty index.

Results: We first identified 27 pairs with significant genetic correlations through the linkage disequilibrium score regression and high-definition likelihood analysis.

View Article and Find Full Text PDF

The Bipolar-Schizophrenia Network for Intermediate Phenotypes (B-SNIP) created psychosis Biotypes based on neurobiological measurements in a multi-ancestry sample. These Biotypes cut across DSM diagnoses of schizophrenia, schizoaffective disorder, and bipolar disorder with psychosis. Two recently developed post hoc ancestry adjustment methods of Polygenic Risk Scores (PRSs) generate Ancestry-Adjusted PRSs (AAPRSs), which allow for PRS analysis of multi-ancestry samples.

View Article and Find Full Text PDF

The investigation of new strategies to prevent acute viral respiratory infections(ARI) is essential for reducing the global disease burden. Genetic association studies are valuable in identifying the susceptibility risk factors for diseases, and genetic evidence can expedite drug approval. To date, few studies have been conducted to reveal the susceptibility risks of ARI and identify novel drug targets through multi-omics genetic association analysis.

View Article and Find Full Text PDF

Exploring potential causal genetic variants and genes for endometrial cancer: Open Targets Genetics, Mendelian randomization, and multi-tissue transcriptome-wide association analysis.

Transl Cancer Res

November 2024

Department of Obstetrics and Gynecology, State Key Laboratory of Complex, Severe and Rare Diseases, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Background: Endometrial cancer (EC) is the most common gynecological malignancy in developed countries, with incidence rates continuing to rise globally. However, the precise mechanisms underlying EC pathogenesis remain largely unexplored. This study aims to prioritize genes associated with EC by leveraging multi-omics data through various bioinformatic methods.

View Article and Find Full Text PDF

FTO Facilitates Cervical Cancer Malignancy Through Inducing m6A-Demethylation of PIK3R3 mRNA.

Cancer Med

December 2024

Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Background: The incidence rate and mortality of cervical cancer rank the fourth in the global female cancer. N6-methyladenosine (m6A) always plays an important role in tumor progression, and fat mass and obesity-associated gene (FTO) works as the m6A demethylase.

Aims: Our study aimed to narrate the biological function and potential mechanisms for FTO in cervical cancer malignancy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!