High-Dimensional Neural Network Potentials for Accurate Prediction of Equation of State: A Case Study of Methane.

J Chem Theory Comput

School of Engineering, Brown University, Providence, Rhode Island 02906, United States.

Published: November 2023

Machine learning-based interatomic potentials, such as those provided by neural networks, are increasingly important in molecular dynamics simulations. In the present work, we consider the applicability and robustness of machine learning molecular dynamics to predict the equation of state properties of methane by using high-dimensional neural network potentials (HDNNPs). We investigate two different strategies for generating training data: one strategy based upon bulk representations using periodic cells and another strategy based upon clusters of molecules. We assess the accuracy of the trained potentials by predicting the equilibrium mass density for a wide range of thermodynamic conditions to characterize the liquid phase, supercritical fluid, and gas phase, as well as the liquid-vapor coexistence curve. Our results show an excellent agreement with reference phase diagrams, with an average error below ∼2% for all studied phases. Moreover, we confirm the applicability of models trained on cluster data sets for producing accurate and reliable results.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.3c00469DOI Listing

Publication Analysis

Top Keywords

high-dimensional neural
8
neural network
8
network potentials
8
equation state
8
molecular dynamics
8
strategy based
8
potentials
4
potentials accurate
4
accurate prediction
4
prediction equation
4

Similar Publications

Graphical models have long been studied in statistics as a tool for inferring conditional independence relationships among a large set of random variables. The most existing works in graphical modeling focus on the cases that the data are Gaussian or mixed and the variables are linearly dependent. In this paper, we propose a double regression method for learning graphical models under the high-dimensional nonlinear and non-Gaussian setting, and prove that the proposed method is consistent under mild conditions.

View Article and Find Full Text PDF

Background: Peripheral nerve sheath tumors (PNSTs) encompass entities with different cellular differentiation and degrees of malignancy. Spatial heterogeneity complicates diagnosis and grading of PNSTs in some cases. In malignant PNST (MPNST) for example, single cell sequencing data has shown dissimilar differentiation states of tumor cells.

View Article and Find Full Text PDF

Brain imaging genetics aims to explore the association between genetic factors such as single nucleotide polymorphisms (SNPs) and brain imaging quantitative traits (QTs). However, most existing methods do not consider the nonlinear correlations between genotypic and phenotypic data, as well as potential higher-order relationships among subjects when identifying bi-multivariate associations. In this paper, a novel method called deep hyper-Laplacian regularized self-representation learning based structured association analysis (DHRSAA) is proposed which can learn genotype-phenotype associations and obtain relevant biomarkers.

View Article and Find Full Text PDF

The amount of information contained in speech signals is a fundamental concern of speech-based technologies and is particularly relevant in speech perception. Measuring the mutual information of actual speech signals is non-trivial, and quantitative measurements have not been extensively conducted to date. Recent advancements in machine learning have made it possible to directly measure mutual information using data.

View Article and Find Full Text PDF

PEDRA-EFB0: colorectal cancer prognostication using deep learning with patch embeddings and dual residual attention.

Med Biol Eng Comput

January 2025

Radiol Dept, Jiangnan Univ, Affiliated Hosp, Wuxi, 214122, Jiangsu, People's Republic of China.

In computer-aided diagnosis systems, precise feature extraction from CT scans of colorectal cancer using deep learning is essential for effective prognosis. However, existing convolutional neural networks struggle to capture long-range dependencies and contextual information, resulting in incomplete CT feature extraction. To address this, the PEDRA-EFB0 architecture integrates patch embeddings and a dual residual attention mechanism for enhanced feature extraction and survival prediction in colorectal cancer CT scans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!