Design of optoelectronic materials with tunable properties using activators and defect clusters has become one of the prime interests of current research. In this study, detailed Density Functional Theory based calculations have been presented to investigate the geometries and electronic structures of various possible defect clusters using Eu-KMgF as a probe which has numerous technological and industrial applications. Using a more reliable hybrid density functional, we have calculated defect formation energies and thermodynamic transition levels to get knowledge about the site selectivity of Eu. It has been observed that the electronic structure of Eu-KMgF is not only dependent on the site of doping but also on the oxidation state of Eu (2+/3+). The present study also investigates the relative stability of different kinds of defects and defect clusters under various synthetic growth conditions. The ultimate aim is to find out the microscopic origin of the fundamental optical properties of Eu-KMgF and provide an unambiguous explanation of available experimental results. Thus, it has been revealed that doping with Eu results in the spontaneous formation of intrinsic defects, which contribute to the observed optical behaviour. We have also extended our study to investigate the role of codoping with Li in determining the geometry and electronic structure of Eu-KMgF aiming to explain its impact on the optical properties. Thus, a complete presentation of the influence of the activator in the absence and presence of lattice defects on the optical properties of KMgF has been accomplished in the current study. We strongly believe that the present study will be helpful in designing tunable phosphor materials by a defect-controlled synthesis strategy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp03966h | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030.
Monocytes are critical in controlling tissue infections and inflammation. Monocyte dysfunction contributes to the inflammatory pathogenesis of cystic fibrosis (CF) caused by CF transmembrane conductance regulator (CFTR) mutations, making CF a clinically relevant disease model for studying the contribution of monocytes to inflammation. Although CF monocytes exhibited adhesion defects, the precise mechanism is unclear.
View Article and Find Full Text PDFClin Dysmorphol
January 2025
Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
Introduction: Agrin, encoded by AGRN, plays a vital role in the acetylcholine receptor clustering pathway, and any defects in this pathway are known to cause congenital myasthenic syndrome (CMS) 8 in early childhood with variable fatigable muscle weakness. The most severe or lethal form of CMS manifests as a fetal akinesia deformation sequence (FADS). To date, only one family has been reported with an association of null variants in AGRN and a lethal FADS.
View Article and Find Full Text PDFCardiovasc Diabetol
January 2025
Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Background: Diabetic myocardial disorder (DbMD, evidenced by abnormal echocardiography or cardiac biomarkers) is a form of stage B heart failure (SBHF) at high risk for progression to overt HF. SBHF is defined by abnormal LV morphology and function and/or abnormal cardiac biomarker concentrations.
Objective: To compare the evolution of four DbMD groups based on biomarkers alone, systolic and diastolic dysfunction alone, or their combination.
Bone Res
January 2025
Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA.
The cranial mesenchyme, originating from both neural crest and mesoderm, imparts remarkable regional specificity and complexity to postnatal calvarial tissue. While the distinct embryonic origins of the superior and dura periosteum of the cranial parietal bone have been described, the extent of their respective contributions to bone and vessel formation during adult bone defect repair remains superficially explored. Utilizing transgenic mouse models in conjunction with high-resolution multiphoton laser scanning microscopy (MPLSM), we have separately evaluated bone and vessel formation in the superior and dura periosteum before and after injury, as well as following intermittent treatment of recombinant peptide of human parathyroid hormone (rhPTH), Teriparatide.
View Article and Find Full Text PDFiScience
January 2025
Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht 3584 EA, the Netherlands.
Traditional classification by clinical phenotype or oxidative phosphorylation (OXPHOS) complex deficiencies often fails to clarify complex genotype-phenotype correlations in mitochondrial disease. A multimodal functional assessment may better reveal underlying disease patterns. Using imaging flow cytometry (IFC), we evaluated mitochondrial fragmentation, swelling, membrane potential, reactive oxygen species (ROS) production, and mitochondrial mass in fibroblasts from 31 mitochondrial disease patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!