Purpose: Mitogen-activated protein kinases (MAPK), specifically the c-Jun N-terminal kinase (JNK)-MAPK subfamily, play a crucial role in the development of various cancers, including hepatocellular carcinoma (HCC). However, the specific roles of JNK1/2 and their upstream regulators, MKK4/7, in HCC carcinogenesis remain unclear.

Methods: In this study, we performed differential expression analysis of JNK-MAPK components at both the transcriptome and protein levels using TCGA and HPA databases. We utilized Kaplan-Meier survival plots and receiver operating characteristic (ROC) curve analysis to evaluate the prognostic performance of a risk scoring model based on these components in the TCGA-HCC cohort. Additionally, we conducted immunoblotting, apoptosis analysis with FACS and soft agar assays to investigate the response of JNK-MAPK pathway components to various death stimuli (TRAIL, TNF-α, anisomycin, and etoposide) in HCC cell lines.

Results: JNK1/2 and MKK7 levels were significantly upregulated in HCC samples compared to paracarcinoma tissues, whereas MKK4 was downregulated. ROC analyses suggested that JNK2 and MKK7 may serve as suitable diagnostic genes for HCC, and high JNK2 expression correlated with significantly poorer overall survival. Knockdown of JNK1 enhanced TRAIL-induced apoptosis in hepatoma cells, while JNK2 knockdown reduced TNF-α/cycloheximide (CHX)-and anisomycin-induced apoptosis. Neither JNK1 nor JNK2 knockdown affected etoposide-induced apoptosis. Furthermore, MKK7 knockdown augmented TNF-α/CHX- and TRAIL-induced apoptosis and inhibited colony formation in hepatoma cells.

Conclusion: Targeting MKK7, rather than JNK1/2 or MKK4, may be a promising therapeutic strategy to inhibit the JNK-MAPK pathway in HCC therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00432-023-05473-9DOI Listing

Publication Analysis

Top Keywords

jnk-mapk pathway
12
hepatocellular carcinoma
8
trail-induced apoptosis
8
jnk2 knockdown
8
hcc
6
apoptosis
5
components
4
components jnk-mapk
4
pathway play
4
play distinct
4

Similar Publications

As a result of molecular domestication of the gag gene of errantiviruses, the Gagr gene was formed in the genome of Drosophila melanogaster. It has previously been shown that the Gagr gene is transcribed at the highest level in gut tissues relative to other tissues, and its transcription is most effectively induced in females in response to ammonium persulfate added to the nutrient medium. In the present work, the gut transcriptome of females with knockdown of the Gagr gene was studied in all tissues under standard conditions and under stress conditions caused by ammonium persulfate.

View Article and Find Full Text PDF

Germline Alteration Analysis Reveals EPHB4R91H Mutation as a Key Player in Multiple Primary Lung Tumors.

Carcinogenesis

November 2024

Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia.

Multiple primary lung tumor is garnering attention from clinicians, with adenocarcinoma emerging as the predominant histological type. Because of the heterogeneity and diffuse distribution of lesions in the same patient, the treatment of multiple primary lung adenocarcinoma (MPLA) is a significant challenge. As a kind of variation unaffected by tumor heterogeneity, germline alterations may play a key role in the development of MPLA.

View Article and Find Full Text PDF

Folic acid mitigates the developmental and neurotoxic effects of bisphenol A in zebrafish by inhibiting the oxidative stress/JNK signaling pathway.

Ecotoxicol Environ Saf

December 2024

Children's Hospital Affiliated to Zhengzhou University, Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou 450018, China; Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China. Electronic address:

Bisphenol A (BPA) is a widespread environmental endocrine disruptor (EED) that can cause various environmental and health issues by inducing oxidative stress. The c-Jun N-terminal kinase (JNK) signaling pathway plays a crucial role in oxidative stress-mediated cellular damage. Although folic acid (FA) has demonstrated antioxidant properties, its potential protective effects against BPA-induced developmental and neurotoxicity, as well as the mechanisms involved in the JNK signaling pathway, are still not completely understood.

View Article and Find Full Text PDF

Identifying and validating the key regulatory transcription factor YY1 in the aging process of pancreatic beta cells based on bioinformatics.

Exp Gerontol

December 2024

Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Suzhou Key Laboratory of Integrated Traditional Chinese and Western Medicine of Digestive Diseases, Kunshan Affiliated Hospital of Yangzhou University, Kunshan, China. Electronic address:

The aging of pancreatic beta cells is closely associated with various diseases, such as impaired glucose tolerance, yet the underlying regulatory mechanisms remain unclear. In this study, we screened young and aged mouse pancreatic beta cells' high-throughput sequencing data from the GEO public database. Utilizing bioinformatics techniques, we identified the key regulatory factor YY1 in the aging process of pancreatic islets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!