High chiral purity of lactic acid is a crucial indicator for the synthesis of chiral lactide as the primary intermediate chemical for ring-open polymerization of high molecular weight polylactic acid (PLA). Lignocellulose biomass is the most promising carbohydrate feedstock for commercial production of PLA, but the presence of trace d-lactic acid in the biorefinery chain adversely affects the synthesis and quality of chiral lactide. This study analyzed the fingerprint of trace d-lactic acid in the biorefinery chain and found that the major source of d-lactic acid comes from lignocellulose feedstock. The naturally occurring lactic acid bacteria and water-soluble carbohydrates in lignocellulose feedstock provide the necessary conditions for d-lactic acid generation. Three strategies were proposed to eliminate the generation pathway of d-lactic acid, including reduction of moisture content, conversion of water-soluble carbohydrates to furan aldehydes in pretreatment, and conversion to l-lactic acid by inoculating engineered l-lactic acid bacteria. The natural reduction of lactic acid content in lignocellulose feedstock during storage was observed due to the lactate oxidase-catalyzed oxidation of l- and d-lactic acids. This study provided an important support for the production of cellulosic l-lactic acid with high chiral purity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.28583 | DOI Listing |
Int J Nanomedicine
January 2025
Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia.
Introduction: Wound treatment is a significant health burden in any healthcare system, which requires proper management to minimize pain and prevent bacterial infections that can complicate the wound healing process.
Rationale: There is a need to develop innovative therapies to accelerate wound healing cost-effectively. Herein, two polymer-based nanofibrous systems were developed using poly-lactic-co-glycolic-acid (PLGA) and polyvinylpyrrolidone (PVP) loaded with a combination of an antibiotic (Fusidic acid, FA) and a local anesthetic (Lidocaine, LDC) via electrospinning technique for an expedited healing process by preventing bacterial infections while reducing the pain sensation.
F1000Res
January 2025
Department Medical Microbiology, Medical Program, Faculty of Medicine, Universitas Mulawarman, Samarinda, East Kalimantan, 75119, Indonesia.
Background: The interaction between Streptococcus mutans (S. mutans) and Veillonella species (Veillonella spp.) is unclear.
View Article and Find Full Text PDFACS Sens
January 2025
School of Basic Medical Science, Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an 710021, China.
To enhance exploration on tumor stem-like cells (TSCs) without altering their cellular biological characteristics, researchers advocate for application of single-cell-derived tumor-spheres (STSs). TSCs are regulated by their surrounding microenvironment, making it crucial to simulate a tumor microenvironment to facilitate STS formation. Recently, exosomes that originated from the tumor microenvironment have emerged as a promising approach for mimicking the tumor microenvironment.
View Article and Find Full Text PDFAnal Methods
January 2025
School of Food and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, 4100114, China.
A non-derivatized high-performance liquid chromatographic (HPLC) method was developed for the simultaneous quantification of hydroxyl acids and their amination products in ammonolysis reaction mixtures. By optimizing the mobile phase composition and pH (0.04 M KHPO-5% methanol, pH = 2.
View Article and Find Full Text PDFAnal Methods
January 2025
Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam.
Triterpenoids are known for their promising biological activities, and there is a growing focus on green extraction methods for these compounds. In this study, ultrasound-assisted deep eutectic solvents were employed to extract triterpenoids from persimmon leaves, with choline chloride-lactic acid identified as an effective green solvent. The extraction conditions were carefully optimized using response surface methodology, resulting in an extraction efficiency of 12.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!