Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biomaterials with nanoscale topography have been increasingly investigated for medical device applications to improve tissue-material interactions. This study assessed the impact of nanoengineered titanium surface domain sizes on early biological responses that can significantly affect tissue interactions. Nanostructured titanium coatings with distinct nanoscale surface roughness were deposited on quartz crystal microbalance with dissipation (QCM-D) sensors by physical vapor deposition. Physico-chemical characterization was conducted to assess nanoscale surface roughness, nano-topographical morphology, wettability, and atomic composition. The results demonstrated increased projected surface area and hydrophilicity with increasing nanoscale surface roughness. The adsorption properties of albumin and fibrinogen, two major plasma proteins that readily encounter implanted surfaces, on the nanostructured surfaces were measured using QCM-D. Significant differences in the amounts and viscoelastic properties of adsorbed proteins were observed, dependent on the surface roughness, protein type, protein concentration, and protein binding affinity. The impact of protein adsorption on subsequent biological responses was also examined using qualitative and quantitative in vitro evaluation of human platelet adhesion, aggregation, and activation. Qualitative platelet morphology assessment indicated increased platelet activation/aggregation on titanium surfaces with increased roughness. These data suggest that nanoscale differences in titanium surface roughness influence biological responses that may affect implant integration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.37635 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!