Introduction: Geographic atrophy (GA) is a progressive form of age-related macular degeneration (AMD) that leads to severe visual impairment and central vision loss. Traditional treatment options for GA are limited, highlighting the need for new therapeutic approaches. In recent years, targeting the complement system has emerged as a promising strategy for the treatment of GA.
Areas Covered: This expert opinion article reviews the investigational drugs inhibiting the complement cascade for the treatment of GA. Specifically, it focuses on the recent FDA approved pegcetacoplan, a C3 complement inhibitor, and avacincaptad pegol, a C5 complement inhibitor, highlighting their potential efficacy and safety profiles based on clinical trial data.
Expert Opinion: FDA approval of intravitreal pegcetacoplan and avacincaptad pegol marks significant progress in the landscape of GA treatment. However, variable results from trials underscore the complex nature of GA and the importance of patient selection. Complement inhibition holds promise, but ongoing research is vital to refine treatment strategies and offer improved outcomes for GA patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/13543784.2023.2276759 | DOI Listing |
Theranostics
January 2025
Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, 94305, USA.
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults, characterized by resistance to conventional therapies and poor survival. Ferroptosis, a form of regulated cell death driven by lipid peroxidation, has recently emerged as a promising therapeutic target for GBM treatment. However, there are currently no non-invasive imaging techniques to monitor the engagement of pro-ferroptotic compounds with their respective targets, or to monitor the efficacy of ferroptosis-based therapies.
View Article and Find Full Text PDFPathogens
December 2024
World Health Organization Headquarters, Av Appia 10, 1211 Geneva, Switzerland.
Individuals with certain primary immunodeficiency disorders (PID) may be unable to clear poliovirus infection after exposure to oral poliovirus vaccine (OPV). Over time, vaccine-related strains can revert to immunodeficiency-associated vaccine-derived poliovirus (iVDPVs) that can cause paralysis in the patient and potentially spread in communities with low immunity. We reviewed the efforts for detection and management of PID patients with iVDPV infections and the epidemiology through an analysis of 184 cases reported to the World Health Organization (WHO) during 1962-2024 and a review of polio program and literature reports.
View Article and Find Full Text PDFAm J Ther
January 2025
Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA.
Clinical Features: Sickle cell patients may develop a multitude of antibodies and experience life-threatening events with transfusion such as hyperhemolysis syndrome or delayed hemolytic transfusion reaction. Further transfusion may not be possible in such cases.
Therapeutic Challenge: When conventional blood products are not available for transfusion yet the patient requires additional oxygen-carrying support, artificial oxygen carriers may be required.
Pediatr Blood Cancer
January 2025
Department of Pediatrics. Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
Programs allowing access to investigational drugs and off-label drug use for serious diseases have often been applied to pediatric cancers. A clinical study conducted under the Japanese "Patient-Proposed Healthcare Services" evaluated the efficacy and safety of dabrafenib plus trametinib in children with BRAF V600 mutant glioma (jRCTs071210071). This study successfully provided unapproved and off-label medications to four enrolled patients, two with low-grade glioma and two with high-grade glioma (median age: 10.
View Article and Find Full Text PDFCEN Case Rep
January 2025
Department of Nephrology and Dialysis, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-Cho, Itabashi, Tokyo, 173-0015, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!