Macrolides are empirically used to treat bacterial community-acquired pneumonia (CAP). , being the major pathogen responsible for bacterial CAP with high mortality rates, express MefA-MsrD efflux pumps to hinder macrolide susceptibility. Despite its importance, the structural features of the efflux-protein complex and its impact on macrolide susceptibility have not yet been elucidated explicitly. Therefore, in the present study, combining homology, threading, and dynamics approaches, MefA and MsrD proteins in pathogenic were modeled. Both membrane (lipid-bilayer) and cytoplasmic (aqueous) environments were considered to simulate the MefA and MsrD proteins in their ideal cellular conditions followed by dynamics analyses. The simulated MefA structure represented a typical major facilitator superfamily protein structure with 13 transmembrane helices. MefA-MsrD interaction via clustering-based docking revealed low-energy conformers with stable intermolecular interactions. The higher clinical MIC value of azithromycin over erythromycin was reflected upon erythromycin eliciting stronger interactions (dissociation constant or = ∼52 μM) with the cytoplasmic ATP-binding MsrD than azithromycin ( = ∼112 μM). The strong (binding energy = -132.1 ± 9.5 kcal/mol) and highly stable (root-mean-square fluctuation < 1.0 Å) physical association between MefA with MsrD was validated and was found to be unaffected by the antibiotic binding. Higher propensity of the macrolides to interact with MsrD than MefA established the importance of the former in macrolide susceptibility. Ours is probably the first report on the structural arrangements in the MefA-MsrD efflux complex and the macrolide susceptibility in . This study provides a novel lead for experimental explorations and efflux-pump inhibitor designs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10601061PMC
http://dx.doi.org/10.1021/acsomega.3c05210DOI Listing

Publication Analysis

Top Keywords

macrolide susceptibility
20
mefa-msrd efflux
12
mefa msrd
12
impact macrolide
8
msrd proteins
8
macrolide
5
susceptibility
5
mefa
5
msrd
5
structure elucidation
4

Similar Publications

Introduction: (), a common pathogen of community-acquired pneumonia in school-age children and adolescents, can cause epidemics worldwide. In late 2023, the incidence of infection among children reached a high level.

Methods: We investigated the antimicrobial susceptibility of 62 isolates obtained from children with pneumonia in Beijing between 2021 and 2023, and analyzed the correlation of antimicrobial susceptibility with molecular characteristics of isolates and clinical manifestations of patients.

View Article and Find Full Text PDF

Antimicrobial resistance and epidemiological patterns of Streptococcus pyogenes in Türkiye.

J Infect Public Health

December 2024

Department of Medical Microbiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey; Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey. Electronic address:

Background: Drug-resistant Group A beta-hemolytic streptococci remain significant infectious agents globally. This study investigated the major S. pyogenes strains responsible for infections in Türkiye and their susceptibility to beta-lactam and macrolide antibiotics.

View Article and Find Full Text PDF

Clonal shift and impact of azithromycin use on antimicrobial resistance of Staphylococcus aureus isolated from bloodstream infection during the COVID-19 pandemic.

Sci Rep

January 2025

Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21951-902, Brazil.

Staphylococcus aureus is a relevant pathogen in bloodstream infections (BSI), and the emergency of the COVID-19 pandemic increased its antimicrobial resistance. S. aureus isolates from BSI (September/2019 - March/2021) were analyzed phenotypically and molecularly, in addition to the clinical features of the patients.

View Article and Find Full Text PDF

Group B Streptococcus (GBS) or Streptococcus agalactiae is a pathogen that causes infections during pregnancy. The aim of this study was to investigate the antibiotic sensitivity profiles, capsule genotypes and biofilm forming capabilities of GBS isolates obtained from pregnant women . The study included 252 pregnant women who applied to Adana Gynecology and Children's Hospital between 2018 and 2023.

View Article and Find Full Text PDF

is increasingly resistant to antibiotics, significantly lowering eradication rates and posing a major public health challenge. This study investigated the distribution of antibiotic-resistant phenotypes and genotypes of in Hainan Province. It determined the minimum inhibitory concentrations (MICs) of six antibiotics using the E-test method and detected resistance genes via Sanger sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!