Perfluoroalkyl and polyfluoroalkyl substances (PFAS) make up a group of anthropogenic chemicals with a myriad of applications. However, some PFAS have been shown to negatively impact human health and the environment, leading to increased regulation, with some countries making efforts to phase out their use. PFAS fate in the environment is driven by physical, chemical, and biological processes, with microbial communities in matrices such as soil and sewage sludge being known to generate a range of low-molecular-weight PFAS metabolites. Proposed metabolic intermediates for both mixed and pure microbial cultures include fluorinated carboxylates that may be activated by CoA prior to β-oxidation and defluorination, although thus far, no PFAS-CoA adducts have been reported. Herein, we expressed and purified acyl-CoA synthetase (ACS) from the soil bacterium sp. strain NB4-1Y and performed an analysis of substrate scope and enzyme kinetics using fluorinated and nonfluorinated carboxylates. We determined that ACS was able to catalyze the formation of CoA adducts of 3,3,3-trifluoropropionic acid, 5,5,5-trifluoropentanoic acid, 4,5,5-trifluoropent-4-enoic acid, and 4,4,5,5,5-pentafluoropentanoic acid. Kinetic analysis revealed a 90-98% decrease in between nonfluorinated carboxylates and their fluorinated analogues. This provides evidence to validate proposed enzymatic pathways for microbial PFAS metabolism that proceed via an activation step involving the formation of CoA adducts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10601079PMC
http://dx.doi.org/10.1021/acsomega.3c05147DOI Listing

Publication Analysis

Top Keywords

formation coa
12
coa adducts
12
fluorinated carboxylates
8
acyl-coa synthetase
8
strain nb4-1y
8
nonfluorinated carboxylates
8
pfas
5
adducts
4
adducts short-chain
4
fluorinated
4

Similar Publications

Endovascular treatment of postoperative aortic coarctation aneurysms-a single center experience.

Front Cardiovasc Med

December 2024

Department of Cardiology, University Hospital 'St. Ekaterina', Medical University of Sofia, Sofia, Bulgaria.

Background: Formation of local type aortic aneurysm years after surgical repair of coarctation (CoA) occurs in 10% of patients independent of the surgical technique and is a potentially life-threatening condition if left untreated with a high risk of aortic rupture. Redo open surgery is associated with 14% in-hospital mortality and a high risk of complications. Endovascular treatment appears to be a feasible alternative with a high success rate and low morbidity and mortality, but data concerning long-term results is still mandatory.

View Article and Find Full Text PDF

B7-H3 (CD276), a member of the B7-family of immune checkpoint proteins, has been shown to have immunological and non-immunological effects promoting tumorigenesis [1, 2] and expression correlates with poor prognosis for many solid tumors, including cervical, ovarian and breast cancers [3-6]. We recently identified a tumor-cell autochthonous tumorigenic role for dimerization of the 4Ig isoform of B7-H3 (4Ig-B7-H3) [7], where 4Ig-B7-H3 dimerization activated tumor-intrinsic cellular proliferation and tumorigenesis pathways, providing a novel opportunity for therapeutic intervention. Herein, a live cell split-luciferase complementation strategy was used to visualize 4Ig-B7-H3 homodimerization in a high-throughput small molecule screen (HTS) to identify modulators of this protein-protein interaction (PPI).

View Article and Find Full Text PDF

Starvation, intermittent fasting and exercise, all of which are recommended lifestyle modifiers share a common metabolic signature, ketogenesis to generate the ketone bodies, predominantly β-hydroxybutyrate. β-hydroxybutyrate exerts beneficial effects across various contexts, preventing or mitigating disease. We hypothesized that these dynamic health benefits of β-hydroxybutyrate might stem from its ability to regulate genome architecture through chromatin remodeling via histone β-hydroxybutyrylation, thereby influencing the transcriptome.

View Article and Find Full Text PDF

Oligodendrocytes are the myelinating cells of the central nervous system. Regulation of the early stages of oligodendrocyte development is critical to the function of the cell. Specifically, myelin sheath formation is an energetically demanding event that requires precision, as alterations may lead to dysmyelination.

View Article and Find Full Text PDF

CD4 T cell activation induces dramatic changes to cellular metabolism for supporting their growth and differentiation into effector subsets. While the cytokines IL-4, TGF-β and IL-21 promote differentiation into Th9 cells, metabolic factors regulating this process remain poorly understood. To assess the role of lipid metabolism in human Th9 cell differentiation, naïve CD4 T cells were purified from blood of healthy volunteers and cultured in the presence or absence of compounds targeting PPAR-γ, acetyl-CoA-carboxylase 1 (ACC1), and AMP-activated protein kinase (AMPK) for four days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!