Nonprobability samples have been used frequently in practice including public health study, economics, education, and political polls. Naïve estimates based on nonprobability samples without any further adjustments may suffer from serious selection bias. Mass imputation has been shown to be effective in practice to improve the representativeness of nonprobability samples. It builds an imputation model based on nonprobability samples and generates imputed values for all units in the probability samples. In this paper, we compare two mass imputation approaches including latent joint multivariate normal model mass imputation (e.g., Generalized Efficient Regression-Based Imputation with Latent Processes (GERBIL)) and fully conditional specification (FCS) procedures for integrating multiple outcome variables simultaneously. The Monte Carlo simulation study shows the benefits of GERBIL and FCS with predictive mean matching in terms of balancing the Monte Carlo bias and variance. We further evaluate our proposed method by combining the information from Tribal Behavioral Risk Factor Surveillance System and Behavioral Risk Factor Surveillance System data files.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10609654PMC
http://dx.doi.org/10.3390/stats6020039DOI Listing

Publication Analysis

Top Keywords

nonprobability samples
20
mass imputation
16
imputation approaches
8
based nonprobability
8
monte carlo
8
behavioral risk
8
risk factor
8
factor surveillance
8
surveillance system
8
samples
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!