Vision transformer architectures attract widespread interest due to their robust representation capabilities of global features. Transformer-based methods as the encoder achieve superior performance compared to convolutional neural networks and other popular networks in many segmentation tasks for medical images. Due to the complex structure of the brain and the approximate grayscale of healthy tissue and lesions, lesion segmentation suffers from over-smooth boundaries or inaccurate segmentation. Existing methods, including the transformer, utilize stacked convolutional layers as the decoder to uniformly treat each pixel as a grid, which is convenient for feature computation. However, they often neglect the high-frequency features of the boundary and focus excessively on the region features. We propose an effective method for lesion boundary rendering called TransRender, which adaptively selects a series of important points to compute the boundary features in a point-based rendering way. The transformer-based method is selected to capture global information during the encoding stage. Several renders efficiently map the encoded features of different levels to the original spatial resolution by combining global and local features. Furthermore, the point-based function is employed to supervise the render module generating points, so that TransRender can continuously refine the uncertainty region. We conducted substantial experiments on different stroke lesion segmentation datasets to prove the efficiency of TransRender. Several evaluation metrics illustrate that our method can automatically segment the stroke lesion with relatively high accuracy and low calculation complexity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10601640PMC
http://dx.doi.org/10.3389/fnins.2023.1259677DOI Listing

Publication Analysis

Top Keywords

boundary rendering
8
lesion segmentation
8
features point-based
8
stroke lesion
8
features
6
segmentation
5
transrender
4
transrender transformer-based
4
boundary
4
transformer-based boundary
4

Similar Publications

Flexible perovskite solar cells (F-PSCs) are appealing for their flexibility and high power-to-weight ratios. However, the fragile grain boundaries (GBs) in perovskite films can lead to stress and strain cracks under bending conditions, limiting the performance and stability of F-PSCs. Herein, we show that the perovskite film can facilely achieve in situ bifacial capping via introducing 4-(methoxy)benzylamine hydrobromide (MeOBABr) as the precursor additive.

View Article and Find Full Text PDF

Multicellular spheroids embedded in 3D hydrogels are prominent in vitro models for 3D cell invasion. Yet, quantification methods for spheroid cell invasion that are high-throughput, objective and accessible are still lacking. Variations in spheroid sizes and the shapes of the cells within render it difficult to objectively assess invasion extent.

View Article and Find Full Text PDF

Introduction: Automatic segmentation of the left atrium (LA) constitutes a crucial pre-processing step in evaluating heart structure and function during clinical interventions, such as image-guided radiofrequency ablation of atrial fibrillation. Despite prior research on LA segmentation, the low contrast in medical images exacerbates the challenge of distinguishing various tissues, rendering accurate boundary delineation of the target area formidable. Moreover, class imbalance due to the small target size further complicates segmentation.

View Article and Find Full Text PDF

Terahertz (THz) polarization detection facilitates the capture of multidimensional data, including intensity, phase, and polarization state, with broad applicability in high-resolution imaging, communication, and remote sensing. However, conventional semiconductor materials are limited by energy band limitations, rendering them unsuitable for THz detection. Overcoming this challenge, the realization of high-stability, room-temperature polarization-sensitive THz photodetectors (PDs) leveraging the thermoelectric effect of Cs(FAMA)Pb(IBr) (CsFAMA)/metasurfaces is presented.

View Article and Find Full Text PDF

Titanium-Niobium alloys have garnered extensive interest in various fields, such as aerospace, medical equipment, and scientific research instruments, due to their superior properties. Particularly, their anti-magnetic characteristics render them high potential in the watchmaking industry. The temperature coefficient of the elastic modulus of balance spring materials is a crucial parameter for assessing the impact of temperature on the properties of TiNb alloys.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!