Background: Syphilis remains a major public health concern in China. We aimed to construct an optimum model to forecast syphilis epidemic trends and provide effective precautionary measures for prevention and control.
Methods: Data on the incidence of syphilis between 1982 and 2020 were obtained from the China Health Statistics Yearbook. An exponential smoothing model (ES model) and a BP neural network model were constructed, and on this basis, the ES-BP combination model was created. The prediction performance was assessed to compare the MAE (Mean Absolute Error), MSE (Mean Squared Error), MAPE (Mean Absolute Percentage Error), and RMSE (Root Mean Square Error).
Results: The optimum ES model was Brown's linear trend model, which had the lowest MAE and MAPE values, and its residual was a white noise sequence (=0.359). The optimum BP neural network model had three layers with the number of nodes in the input, hidden, and output layers set to 5, 11, and 1, and the mean values of MAE, MSE, and RMSE by five-fold cross-validation were 1.519, 6.894, and 1.969, respectively. The ES-BP combination model had three layers, with model nodes 1, 4, and 1. The lowest mean values of MAE, MSE, and RMSE obtained by five-fold cross-validation were 1.265, 5.739, and 2.105, respectively.
Conclusion: The ES, BP neural network, and ES-BP combination models can be used to predict syphilis incidence, but the prediction performance of the ES-BP combination model is better than that of a basic ES model and a basic BP neural network model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10612558 | PMC |
http://dx.doi.org/10.18502/ijph.v52i10.13844 | DOI Listing |
Brain Struct Funct
January 2025
Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.
View Article and Find Full Text PDFNeuroradiology
January 2025
Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
Introduction: Bipolar disorder (BD) and major depressive disorder (MDD) have overlapping clinical presentations which may make it difficult for clinicians to distinguish them potentially resulting in misdiagnosis. This study combined structural MRI and machine learning techniques to determine whether regional morphological differences could distinguish patients with BD and MDD.
Methods: A total of 123 participants, including BD (n = 31), MDD (n = 48), and healthy controls (HC, n = 44), underwent high-resolution 3D T1-weighted imaging.
Langmuir
January 2025
Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, United States.
Biological memory is the ability to develop, retain, and retrieve information over time. Currently, it is widely accepted that memories are stored in synapses (i.e.
View Article and Find Full Text PDFJ Comp Neurol
January 2025
Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico.
Snails belonging to the genus Biomphalaria serve as obligatory intermediate hosts for the trematode Schistosoma mansoni, the causative agent for the most widespread form of schistosomiasis. The simpler nervous systems of gastropod molluscs, such as Biomphalaria, provide advantageous models for investigating neural responses to infection at the cellular and network levels. The present study examined neuropeptides related to cholecystokinin (CCK), a major multifunctional regulator of central nervous system (CNS) function in mammals.
View Article and Find Full Text PDFToxicol Pathol
January 2025
Charles River Laboratories, Edinburgh, UK.
Thyroid tissue is sensitive to the effects of endocrine disrupting substances, and this represents a significant health concern. Histopathological analysis of tissue sections of the rat thyroid gland remains the gold standard for the evaluation for agrochemical effects on the thyroid. However, there is a high degree of variability in the appearance of the rat thyroid gland, and toxicologic pathologists often struggle to decide on and consistently apply a threshold for recording low-grade thyroid follicular hypertrophy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!