Nanorobots capable of active movement are an exciting technology for targeted therapeutic intervention. However, the extensive motion range and hindrance of the blood-brain barrier impeded their clinical translation in glioblastoma therapy. Here, a marsupial robotic system constructed by integrating chemical/magnetic hybrid nanorobots (child robots) with a miniature magnetic continuum robot (mother robot) for intracranial cross-scale targeting drug delivery is reported. For primary targeting on macroscale, the continuum robot enters the cranial cavity through a minimally invasive channel (e.g., Ommaya device) in the skull and transports the nanorobots to pathogenic regions. Upon circumventing the blood-brain barrier, the released nanorobots perform secondary targeting on microscale to further enhance the spatial resolution of drug delivery. In vitro experiments against primary glioblastoma cells derived from different patients are conducted for personalized treatment guidance. The operation feasibility within organisms is shown in ex vivo swine brain experiments. The biosafety of the treatment system is suggested in in vivo experiments. Owing to the hierarchical targeting method, the targeting rate, targeting accuracy, and treatment efficacy have improved greatly. The marsupial robotic system offers a novel intracranial local therapeutic strategy and constitutes a key milestone in the development of glioblastoma treatment platforms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202306876 | DOI Listing |
Adv Mater
March 2024
State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
Nanorobots capable of active movement are an exciting technology for targeted therapeutic intervention. However, the extensive motion range and hindrance of the blood-brain barrier impeded their clinical translation in glioblastoma therapy. Here, a marsupial robotic system constructed by integrating chemical/magnetic hybrid nanorobots (child robots) with a miniature magnetic continuum robot (mother robot) for intracranial cross-scale targeting drug delivery is reported.
View Article and Find Full Text PDFSci Rep
January 2023
Aerial Robotics Laboratory, Department of Aeronautics, Imperial College London, London, SW7 2AZ, UK.
Aerial robots can perch onto structures at heights to reduce energy use or to remain firmly in place when interacting with their surroundings. Like how birds have wings to fly and legs to perch, these bio-inspired aerial robots use independent perching modules. However, modular design not only increases the weight of the robot but also its size, reducing the areas that the robot can access.
View Article and Find Full Text PDFBiol Lett
July 2020
School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia.
Foraging by mammalian herbivores has profound impacts on natural and modified landscapes, yet we know little about how they find food, limiting our ability to predict and manage their influence. Mathematical models show that foragers exploiting odour cues outperform a random walk strategy. However, discovering how free-ranging foragers exploit odours in real, complex landscapes has proven elusive because of technological constraints.
View Article and Find Full Text PDFBiodiversity loss and sparse observational data mean that critical conservation decisions may be based on little to no information. Emerging technologies, such as airborne thermal imaging and virtual reality, may facilitate species monitoring and improve predictions of species distribution. Here we combined these two technologies to predict the distribution of koalas, specialized arboreal foliovores facing population declines in many parts of eastern Australia.
View Article and Find Full Text PDFJ Biophotonics
February 2013
Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
A multi-joystick robotic laser microscope system used to control two optical traps (tweezers) and one laser scissors has been developed for subcellular organelle manipulation. The use of joysticks has provided a "user-friendly" method for both trapping and cutting of organelles such as chromosomes in live cells. This innovative design has enabled the clean severing of chromosome arms using the laser scissors as well as the ability to easily hold and pull the severed arm using the laser tweezers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!