The technique presented here identifies tethered mould designs, optimised for growing cultured tissue with very highly-aligned cells. It is based on a microscopic biophysical model for polarised cellular hydrogels. There is an unmet need for tools to assist mould and scaffold designs for the growth of cultured tissues with bespoke cell organisations, that can be used in applications such as regenerative medicine, drug screening and cultured meat. High-throughput biophysical calculations were made for a wide variety of computer-generated moulds, with cell-matrix interactions and tissue-scale forces simulated using a contractile network dipole orientation model. Elongated moulds with central broadening and one of the following tethering strategies are found to lead to highly-aligned cells: (1) tethers placed within the bilateral protrusions resulting from an indentation on the short edge, to guide alignment (2) tethers placed within a single vertex to shrink the available space for misalignment. As such, proof-of-concept has been shown for mould and tethered scaffold design based on a recently developed biophysical model. The approach is applicable to a broad range of cell types that align in tissues and is extensible for 3D scaffolds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1478-3975/ad0276 | DOI Listing |
Cell
January 2025
Program in Bioinformatics, Boston University, Boston, MA 02215, USA; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Center for Network Systems Biology, Boston University, Boston, MA 02218, USA; Department of Chemistry, Boston University, Boston, MA 02215, USA; Department of Chemical Physiology and Biochemistry, Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA. Electronic address:
Knowledge of protein-metabolite interactions can enhance mechanistic understanding and chemical probing of biochemical processes, but the discovery of endogenous ligands remains challenging. Here, we combined rapid affinity purification with precision mass spectrometry and high-resolution molecular docking to precisely map the physical associations of 296 chemically diverse small-molecule metabolite ligands with 69 distinct essential enzymes and 45 transcription factors in the gram-negative bacterium Escherichia coli. We then conducted systematic metabolic pathway integration, pan-microbial evolutionary projections, and independent in-depth biophysical characterization experiments to define the functional significance of ligand interfaces.
View Article and Find Full Text PDFPathogens
January 2025
Biomedical Sciences Laboratory (CBMU), School of Medicine, Universidad de Los Andes, Bogotá D.C 111711, Colombia.
, the etiological agent of Chagas disease, is a parasite known for its diverse genotypic variants, or Discrete Typing Units (DTUs), which have been associated with varying degrees of tissue involvement. However, aspects such as parasite attachment remain unclear. It has been suggested that the TcI genotype is associated with cardiac infection, the most common involved site in chronic human infection, while TcII is associated with digestive tract involvement.
View Article and Find Full Text PDFLife (Basel)
January 2025
The Laboratory of Personalized Chemo-Radiation Therapy, Institute of Future Biophysics, Moscow 141700, Russia.
Cancer-related deaths primarily occur due to metastasis, a process involving the migration and invasion of cancer cells. In most solid tumors, metastasis occurs through collective cell migration (CCM), guided by "cellular leaders". These leader cells generate forces through actomyosin-mediated protrusion and contractility.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
Hepatocellular carcinoma (HCC) cells critically depend on PARP1 and CHK1 activation for survival. Combining the PARP inhibitor (PARPi) olaparib with a CHK1 inhibitor (MK-8776, CHK1i) produced a synergistic effect, reducing cell viability and inducing marked oxidative stress and DNA damage, particularly in the HepG2 cells. This dual treatment significantly increased apoptosis markers, including γH2AX and caspase-3/7 activity.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain.
The ubiquitin proteasome system (UPS) is implicated in protein homeostasis. One of the proteins involved in this system is HERC1 E3 ubiquitin ligase, which was associated with several processes including the normal development and neurotransmission at the neuromuscular junction (NMJ), autophagy in projection neurons, myelination of the peripheral nervous system, among others. The tambaleante (tbl) mouse model carries the spontaneous mutation Gly483Glu substitution in the HERC1 E3 protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!