A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

LOC102549726/miR-760-3p network is involved in the progression of ISO-induced pathological cardiomyocyte hypertrophy via endoplasmic reticulum stress. | LitMetric

Pathological cardiac hypertrophy (CH) is featured by myocyte enlargement and cardiac malfunction. Multiple signaling pathways have been implicated in diverse pathological and physiological processes in CH. However, the function of LOC102549726/miR-760-3p network in CH remains unclear. Here, we characterize the functional role of LOC102549726/miR-760-3p network in CH and delineate the underlying mechanism. The expression of LncRNA LOC102549726 and hypertrophic markers was significantly increased compared to the control, while the level of miR-760-3p was decreased. Next, we examined ER stress response in a hypertrophic cardiomyocyte model. The expression of ER stress markers was greatly enhanced after incubation with ISO. The hypertrophic reaction, ER stress response, and increased potassium and calcium ion channels were alleviated by genetic downregulation of LOC102549726. It has been demonstrated that LOC102549726 functions as a competitive endogenous RNA (ceRNA) of miR-760-3p. Overexpression of miR-760-3p decreased cell surface area and substantially mitigated ER stress response; protein levels of potassium and calcium channels were also significantly up-regulated compared to the NC control. In contrast, miR-760-3p inhibition increased cell size, aggravated CH and ER stress responses, and reduced ion channels. Collectively, in this study we demonstrated that the LOC102549726/miR-760-3p network was a crucial regulator of CH development. Ion channels mediate the ER stress response and may be a downstream sensor of the LOC102549726/miR-760-3p network. Therefore, these findings advance our understanding of pathological CH and provide new insights into therapeutic targets for cardiac remodeling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635935PMC
http://dx.doi.org/10.1007/s10735-023-10166-1DOI Listing

Publication Analysis

Top Keywords

loc102549726/mir-760-3p network
20
stress response
16
ion channels
12
compared control
8
mir-760-3p decreased
8
potassium calcium
8
stress
7
loc102549726/mir-760-3p
5
network involved
4
involved progression
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!