Metastasis of gastric cancer (GC) is one of the major causes of death among GC patients. GC metastasis involves numerous biological processes, yet the specific molecular biological mechanisms have not been elucidated. Here, we report a novel tumor suppressor, retinoic acid-induced 2 (RAI2), which is located in the Xp22 region of the chromosome and plays a role in inhibiting GC growth and invasion. In this study, integrated analysis of The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) datasets and immunohistochemistry staining data suggested that RAI2 expression in GC samples was low. Moreover, the immune infiltration analysis indicated that low expression of RAI2 in GC was associated with a higher intensity of tumor-infiltrating lymphocytes (TILs) and an abundance of Programmed death ligand 1 (PD-L1) expression. Gene set enrichment analysis (GSEA) analysis further revealed that RAI2 regulated some pathways including the GAP junction, focal adhesion and ECM receptor interaction pathway, immune regulation, PI3K-Akt signaling, MAPK signaling, cell cycle, and DNA replication. Furthermore, the knockdown of RAI2 promoted GC cell proliferation, migration, and invasion . Taken together, these results suggest that the tumor suppressor RAI2 could be a potential target for the development of anti-cancer strategies in GC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683588 | PMC |
http://dx.doi.org/10.18632/aging.205135 | DOI Listing |
J Biochem
January 2025
Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
Glutamate-rich WD40 repeat containing 1 (GRWD1) is a novel oncogene/oncoprotein that downregulates the p53 tumor suppressor protein through several mechanisms. One important mechanism involves binding of GRWD1 to RPL11, which competitively inhibits the RPL11-MDM2 interaction and releases RPL11-mediated suppression of MDM2 ubiquitin ligase activity toward p53. Here, we mined the TCGA (The Cancer Genome Atlas) database to gain in-depth insight into the clinical relevance of GRWD1.
View Article and Find Full Text PDFActa Neurobiol Exp (Wars)
January 2025
Laboratory of Animal Models, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) gene is a critical tumor suppressor that plays an essential role in the development and functionality of the central nervous system. Located on chromosome 10 in humans and chromosome 19 in mice, PTEN encodes a protein that regulates cellular processes such as division, proliferation, growth, and survival by antagonizing the PI3K‑Akt‑mTOR signaling pathway. In neurons, PTEN dephosphorylates phosphatidylinositol‑3,4,5‑trisphosphate (PIP3) to PIP2, thereby modulating key signaling cascades involved in neurogenesis, neuronal migration, and synaptic plasticity.
View Article and Find Full Text PDFGenes Chromosomes Cancer
January 2025
Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China.
SMARCA4-deficient lung cancer, including thoracic SMARCA4-deficient undifferentiated tumors and SMARCA4-deficient nonsmall-cell lung carcinomas, is a rare and aggressive disease characterized by rapid progression and poor prognosis. This cancer was identified as a distinct entity with specific morphologic and molecular features in the 2021 WHO Classification of Thoracic Tumors. Molecular alterations in SMARCA4 are specific to this type of lung cancer.
View Article and Find Full Text PDFMol Ther Oncol
March 2025
School of Interdisciplinary Informatics, University of Nebraska Omaha, 1110 South 67th Street, Omaha, NE 68182, USA.
Neuroblastoma (NB) poses a significant challenge in pediatric cancer care due to its aggressive nature and poor prognosis. While advances have been made in clinical treatments, therapy resistance remains a tough hurdle in NB treatment. While much research has focused on identifying oncogenes in NB, there has been less emphasis on understanding tumor suppressors.
View Article and Find Full Text PDFMater Today Bio
February 2025
Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
Cell membrane targeting sonodynamic therapy could induce the accumulation of lipid peroxidation (LPO), drive ferroptosis, and further enhances immunogenic cell death (ICD) effects. However, ferroptosis is restrained by the ferroptosis suppressor protein 1 (FSP1) at the plasma membrane, which can catalyze the regeneration of ubiquinone (CoQ10) by using NAD(P)H to suppress the LPO accumulation. This work describes the construction of US-active nanoparticles (TiF NPs), which combinate cell-membrane targeting sonosensitizer TBT-CQi with FSP1 inhibitor (iFSP1), facilitating cell-membrane targeting sonodynamic-triggered ferroptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!