Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Augmented glenoid baseplate and offset humeral tray reverse total shoulder arthroplasty (RTSA) implants may decrease the mechanical impingement that creates scapular notching and improve shoulder function. This study evaluated the clinical efficacy of three different RTSA glenoid baseplate and offset humeral tray combinations for patient-reported shoulder function, pain and instability, radiographic imaging evidence of glenoid baseplate or humeral stem subsidence and migration, bony changes associated with implant loosening, and scapular notching over the initial 2 years post-RTSA. Primary outcomes included active shoulder mobility, perceived function, pain, instability, scapular notching, and implant survival.
Methods: Sixty-seven patients from 6 research sites received one of three different glenoid baseplate and humeral tray combinations. Group 1 (n = 21) received a mini-augmented glenoid baseplate with a standard humeral tray; Group 2 (n = 23) received a standard glenoid baseplate and a mini-humeral tray with 3 trunnion offset options; Group 3 (n = 23) received both a mini-augmented glenoid baseplate and a mini-humeral tray with 3 trunnion offset options. Subjects underwent radiologic evaluation, completed the ASES scale, the EQ-5D-5L quality of life scale, VAS shoulder pain and instability questions, and active shoulder mobility measurements pre-operatively, and 6-weeks, 6-months, 1-2 years post-RTSA.
Results: Improved active shoulder mobility, quality of life, perceived function, decreased shoulder pain and instability, excellent implant survival and minimal scapular notching were observed for all groups. Group 3 had better overall active shoulder mobility than the other groups and better perceived function than Group 1.
Conclusion: The group that received the mini-augmented glenoid baseplate and mini-humeral tray combination had better overall active shoulder flexion, external rotation at 90° abduction, and internal rotation. This group also had better perceived shoulder function compared to the group that received a mini-augmented glenoid baseplate with a standard humeral tray.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00590-023-03757-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!