In response to the control problems of large-deformation roadways in close-distance coal seams, taking a typical roadway under irregular goafs and residual coal pillar in deep close-distance coal seams as the background, the characteristics of mine pressure and key difficulties in surrounding rock control of roadway are explored and an improvement strategy for controlling surrounding rock is proposed. The stress expression in roadway floor under the influence of residual coal pillar is derived by theoretical calculation. The peak lines of deviatoric stress and vertical stress in roadway after the mining of the upper coal seam are obtained by numerical simulation. The roadway is divided into two key zones: ordinary zone and disturbance zone by residual coal pillar, and the disturbance range of roadway below residual coal pillar is determined to be 44.60 m. It reveals the differential, asymmetric, and non-uniform distortion and failure laws of roadway at different positions under irregular goafs and residual coal pillar. The differential control technology named asymmetric support in ordinary zone of roadway and combined support and drilling pressure relief in disturbance zone below residual coal pillar is proposed. The feasibility of differential pressure relief and control technology has been verified through on-site engineering test, which ensures the safety and stability of roadway and provides technical references for surrounding rock control in similar deep and complex roadways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10613204PMC
http://dx.doi.org/10.1038/s41598-023-45857-yDOI Listing

Publication Analysis

Top Keywords

residual coal
24
coal pillar
24
pressure relief
12
irregular goafs
12
close-distance coal
12
coal seams
12
surrounding rock
12
roadway
10
coal
10
differential pressure
8

Similar Publications

To minimize the number of casualties due to poisoning in coal mine gas explosions, the migration characteristics of harmful hot gas groups in the mine ventilation system following an explosion were analyzed. Through pipeline experiments, initial CO concentrations and residual temperatures after gas explosions were determined and used as key simulation parameters. Simulations were performed using the TF1M(3D) software based on the case of the gas explosion at the Tunlan Mine.

View Article and Find Full Text PDF

Degradation mechanism of PGNa by the immobilized degrading enzymes from magnetic fermentation residue biochar.

Sci Total Environ

January 2025

Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China; State Key Laboratory of Coal Liquification, Gasification and Utilization with High Efficiency and Low Carbon Technology, East China University of Science and Technology, Shanghai 200237, China. Electronic address:

The development of a method to efficiently remove high concentrations of penicillin G sodium (PGNa) from the environment is important for human and animal health and safety. In this study, the degradative enzymes were immobilized by adsorption using biochar from penicillin fermentation waste residue, which could efficiently remove PGNa (900 mg/L) from an aqueous solution, with a removal rate of 99.84 % within 20 min.

View Article and Find Full Text PDF

Proper waste management and sustainable energy production are crucial for human development. For this purpose, this study evaluates the impact of blending percentage on energy recovery potential and environmental benefits of co-combustion of wastewater sludge and Brazilian low-rank coal. The sludge and coal were characterised in terms of their potential as fuel and co-combustion tests were carried out in a pilot-scale bubbling fluidised bed focused on the influence of the percentage of sludge mixture on the behaviour of co-combustion with coal in terms of flue gas composition and fluidised bed temperature stability.

View Article and Find Full Text PDF

Bearing characteristics and damage rules of regenerated rock mass.

Sci Rep

January 2025

Dazhu Coal and Electricity Group of Sichuan, Xiaohezui Coal Mine, Dazhou, 6635000, China.

This study investigates the bearing characteristics and damage evolution of regenerative rock masses formed under varying geological conditions through uniaxial loading tests, numerical simulations, and theoretical derivations. Regenerative rock mass samples with different water-cement ratios and cementing materials were prepared, and the mechanical behavior during the loading process was analyzed. The results indicate that the secondary damage process can be divided into three stages: pre-peak, weakening, and friction.

View Article and Find Full Text PDF

Objective: To assess whether intra-arterial tenecteplase administered after successful endovascular recanalisation improves outcomes in patients with acute arterial occlusion of the posterior circulation.

Design: Multicentre randomised controlled trial.

Setting: 31 hospitals in China, 24 January 2023 to 24 August 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!