Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Psychological stressors, like the nearby presence of a predator, can be strong enough to induce physiological/hormonal alterations, leading to appetite changes. However, little is known about how threats can alter feeding-related hypothalamic circuit functions. Here, we found that proenkephalin (Penk)-expressing lateral hypothalamic (LH) neurons of mice exposed to predator scent stimulus (PSS) show sensitized responses to high-fat diet (HFD) eating, whereas silencing of the same neurons normalizes PSS-induced HFD overconsumption associated with a negative emotional state. Downregulation of endogenous enkephalin peptides in the LH is crucial for inhibiting the neuronal and behavioral changes developed after PSS exposure. Furthermore, elevated corticosterone after PSS contributes to enhance the reactivity of glucocorticoid receptor (GR)-containing LH neurons to HFD, whereas pharmacological inhibition of GR in the LH suppresses PSS-induced maladaptive behavioral responses. We have thus identified the LH neurons as a critical component in the threat-induced neuronal adaptation that leads to emotional overconsumption.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10613253 | PMC |
http://dx.doi.org/10.1038/s41467-023-42623-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!