A novel homozygous mutation in RASGRP1 that predisposes to immune dysregulation and immunodeficiency associated with uncontrolled Epstein-Barr virus-induced B cell proliferation.

Clin Immunol

Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon; Research Center of Excellence in Immunity and Infections, American University of Beirut, Beirut, Lebanon. Electronic address:

Published: December 2023

Background: RASGRP1-deficiency results in an immune dysregulation and immunodeficiency that manifest as autoimmunity, lymphoproliferation, lymphopenia, defective T cell function, and increased incidence of Epstein-Bar Virus infections and lymphomas.

Objective: To investigate the mechanism of autoimmune hemolytic anemia and infections in a male patient of consanguineous parents from Lebanon.

Methods: Genetic diagnosis was obtained using next generation and Sanger sequencing. Protein expression and phosphorylation were determined by immunoblotting. T and B cell development and function were studied by flow cytometry. Cytokine and immunoglobulin secretions were quantified by enzyme-linked immunosorbent assay.

Results: The patient suffered from severe lymphopenia especially affecting the T cell compartment. Genetic analysis revealed a homozygous insertion of adenine at position 1396_1397 in RASGRP1 that abolished protein expression and downstream Ras signaling. T cells from the patient showed severe activation defects resulting in uncontrolled Epstein-Bar Virus-induced B cell proliferation. B cells from the patient were normal.

Conclusion: This report expands the spectrum of mutations in patients with RasGRP1 deficiency, and provides evidence for the important role RasGRP1 plays in the ability of T cells to control Epstein-Bar Virus-induced B cell proliferation.

Clinical Implications: Following diagnosis, the patient will be maintained on oral valganciclovir and monitored regularly for Epstein-Bar Virus infections to avoid the development of Epstein-Bar Virus- induced B cell lymphoma. He is also candidate for hematopoietic stem cell transplantation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clim.2023.109813DOI Listing

Publication Analysis

Top Keywords

virus-induced cell
12
immune dysregulation
8
dysregulation immunodeficiency
8
cell
8
cell proliferation
8
epstein-bar virus
8
virus infections
8
protein expression
8
cells patient
8
epstein-bar virus-induced
8

Similar Publications

Enhancing virus-mediated genome editing for cultivated tomato through low temperature.

Plant Cell Rep

January 2025

Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea.

Viral vector-mediated gene editing is enhanced for cultivated tomato under low temperature conditions, enabling higher mutation rates, heritable, and virus-free gene editing for efficient breeding. The CRISPR/Cas system, a versatile gene-editing tool, has revolutionized plant breeding by enabling precise genetic modifications. The development of robust and efficient genome-editing tools for crops is crucial for their application in plant breeding.

View Article and Find Full Text PDF

RsWOX13 promotes taproot development by activating cell division and expansion and sucrose metabolism in radish.

Plant Physiol Biochem

December 2024

National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, PR China; College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China. Electronic address:

Radish is an important annual root vegetable crop, whose yield is largely dependent on taproot thickening and development. However, the regulatory network of WOXs-mediated taproot development remains poorly understood in radish. Herein, the RsWOX13 was classified in an ancient clade of the WOX gene family that harbors a conserved homeodomain.

View Article and Find Full Text PDF

Nucleocapsid assembly drives Ebola viral factory maturation and dispersion.

Cell

December 2024

Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany. Electronic address:

Article Synopsis
  • Viral factories (VFs) are membrane-less organelles where negative-sense RNA viruses, like Ebola, replicate and encapsidate their genomes.
  • Using advanced imaging techniques, researchers observed how viral nucleocapsids (NCs) change from loose formations to compact structures during the infection process.
  • The study found that as VFs mature, they become less spherical and more integrated with cellular components, which likely aids in the transportation of NCs for virus budding.
View Article and Find Full Text PDF

The ATP-dependent zinc metalloprotease (FtsH) protein gene family is essential for plant growth, development, and stress responses. Although FtsH genes have been identified in various plant species, the FtsH gene family in wheat (Triticum aestivum) remains unstudied. In this study, we identified 11 TaFtsH genes with uneven chromosomal distribution, significant variations in gene sequence length, and differing intron numbers among individual members.

View Article and Find Full Text PDF

Characterization of the wall-associated kinase (WAK) gene family in Gossypium barbadense reveals the positive role of GbWAK5 in salt tolerance.

Plant Cell Rep

December 2024

State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.

We characterized the WAK gene family in Gossypium barbadense and revealed the potential function of GbWAK5 in regulating salt tolerance by modulating ion homeostasis. Soil salinization is one of the main factors restricting cotton production. Although the role of the wall-associated kinases (WAKs) in plants has been extensively studied, its response to salt stress in sea-island cotton (Gossypium barbadense L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!