The universe of galectin-binding partners and their functions in health and disease.

J Biol Chem

Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. Electronic address:

Published: December 2023

Galectins, a family of evolutionarily conserved glycan-binding proteins, play key roles in diverse biological processes including tissue repair, adipogenesis, immune cell homeostasis, angiogenesis, and pathogen recognition. Dysregulation of galectins and their ligands has been observed in a wide range of pathologic conditions including cancer, autoimmune inflammation, infection, fibrosis, and metabolic disorders. Through protein-glycan or protein-protein interactions, these endogenous lectins can shape the initiation, perpetuation, and resolution of these processes, suggesting their potential roles in disease monitoring and treatment. However, despite considerable progress, a full understanding of the biology and therapeutic potential of galectins has not been reached due to their diversity, multiplicity of cell targets, and receptor promiscuity. In this article, we discuss the multiple galectin-binding partners present in different cell types, focusing on their contributions to selected physiologic and pathologic settings. Understanding the molecular bases of galectin-ligand interactions, particularly their glycan-dependency, the biochemical nature of selected receptors, and underlying signaling events, might contribute to designing rational therapeutic strategies to control a broad range of pathologic conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696404PMC
http://dx.doi.org/10.1016/j.jbc.2023.105400DOI Listing

Publication Analysis

Top Keywords

galectin-binding partners
8
range pathologic
8
pathologic conditions
8
universe galectin-binding
4
partners functions
4
functions health
4
health disease
4
disease galectins
4
galectins family
4
family evolutionarily
4

Similar Publications

The universe of galectin-binding partners and their functions in health and disease.

J Biol Chem

December 2023

Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. Electronic address:

Galectins, a family of evolutionarily conserved glycan-binding proteins, play key roles in diverse biological processes including tissue repair, adipogenesis, immune cell homeostasis, angiogenesis, and pathogen recognition. Dysregulation of galectins and their ligands has been observed in a wide range of pathologic conditions including cancer, autoimmune inflammation, infection, fibrosis, and metabolic disorders. Through protein-glycan or protein-protein interactions, these endogenous lectins can shape the initiation, perpetuation, and resolution of these processes, suggesting their potential roles in disease monitoring and treatment.

View Article and Find Full Text PDF

Molecular Imaging for In Vivo Tracking and Detection of Galectin Binding Partners.

Methods Mol Biol

March 2022

Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil.

Molecular imaging (MI) is a non-invasive growing technology that allows the investigation of cellular and molecular processes in basic and clinical research and medicine. Luminescent proteins and radionuclides can be associated to target molecules providing high-definition and real-time image of whole body in few minutes or hours. Several MI studies have enabled the determination of molecular partners, in vivo tracking, and fate of compounds in different disorders.

View Article and Find Full Text PDF

The concept of the sugar code interprets the cellular glycophenotype as a rich source of information read by glycan-lectin recognition in situ. This study's aim is the comprehensive characterization of galectin expression by immunohistochemistry during chicken nephrogenesis along with mapping binding sites by (ga)lectin histochemistry. Light and two-color fluorescence microscopy were used.

View Article and Find Full Text PDF

Lubricin is a mucinous, synovial fluid glycoprotein that enables near frictionless joint motion via adsorption to the surface of articular cartilage and its lubricating properties in solution. Extensive O-linked glycosylation within lubricin's mucin-rich domain is critical for its boundary lubricating function; however, it is unknown exactly how glycosylation facilitates cartilage lubrication. Here, we find that the lubricin glycome is enriched with terminal β-galactosides, known binding partners for a family of multivalent lectins called galectins.

View Article and Find Full Text PDF

Assembly, organization and regulation of cell-surface receptors by lectin-glycan complexes.

Biochem J

July 2015

Laboratory of Immunopathology, Institute of Biology and Experimental Medicine (IBYME), CONICET, Buenos Aires, Argentina School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina

Galectins are a family of β-galactoside-binding lectins carrying at least one consensus sequence in the carbohydrate-recognition domain. Properties of glycosylated ligands, such as N- and O-glycan branching, LacNAc (N-acetyl-lactosamine) content and the balance of α2,3- and α2,6-linked sialic acid dramatically influence galectin binding to a preferential set of counter-receptors. The presentation of specific glycans in galectin-binding partners is also critical, as proper orientation and clustering of oligosaccharide ligands on multiple carbohydrate side chains increase the binding avidity of galectins for particular glycosylated receptors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!