Nickel-iron doped on granular activated carbon for efficient immobilization in biohydrogen production.

Bioresour Technol

Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia; Nanomaterials Processing and Technology Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia. Electronic address:

Published: January 2024

Nickel-iron doped granular activated carbon (GAC-N) was used to enhance immobilization in biohydrogen production. The effect of the sludge ratio to GAC-N, ranged 1:0.5-4, was studied. The optimum hydrogen yield (HY) of 1.64 ± 0.04 mol H/mol sugar consumed and hydrogen production rate (HPR) of 45.67 ± 1.00 ml H/L.h was achieved at a ratio of 1:1. Immobilization study was performed at 2 d HRT with a stable HY of 2.94 ± 0.16 mol H/mol sugar consumed (HPR of 83.10 ± 4.61 ml H/L.h), shorten biohydrogen production from 66 d to 26 d, incrementing HY by 57.30 %. The Monod model resulted in the optimum initial sugar, maximum specific growth rate, specific growth rate, and cell growth saturation coefficient at 20 g/L, 2.05 h, 1.98 h and 6.96 g/L, respectively. The dominant bacteria identified was Thermoanaerobacterium spp. The GAC-N showed potential as a medium for immobilization to improve biohydrogen production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2023.129933DOI Listing

Publication Analysis

Top Keywords

biohydrogen production
16
nickel-iron doped
8
doped granular
8
granular activated
8
activated carbon
8
immobilization biohydrogen
8
h/mol sugar
8
sugar consumed
8
specific growth
8
growth rate
8

Similar Publications

Biohydrogen fermentation from pretreated biomass in lignocellulose biorefinery: Effects of inhibitory byproducts and recent progress in mitigation strategies.

Biotechnol Adv

December 2024

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China. Electronic address:

Lignocellulosic biomass (LCB) is expected to play a critical role in achieving the goal of biomass-to-bioenergy conversion because of its wide distribution and low price. Biomass fermentation is a promising method for the sustainable generation of biohydrogen (bioH) from the renewable feedstock. Due to the inherent resistant structure of biomass, LCB needs to be pretreated to improve its digestibility and utilization.

View Article and Find Full Text PDF

The rapid growth of global energy demand accelerates the development of sustainable, clean, and renewable energy sources. Biohydrogen production, driven by functional microorganisms, offers a promising solution. Multiple species of bacteria, fungi, microalgae, and archaea were able to produce hydrogen.

View Article and Find Full Text PDF

A biohydrogen and polyhydroxyalkanoates (PHA)-producing natural photoheterotrophic mixed culture composed mainly by Rhodopseudomonas palustris and Clostridium sp was studied by a proteomic analysis under non-growth conditions (nitrogen-absence and organic acids). Proteins in C. pasteurianum were upregulated, particularly those related to stress response.

View Article and Find Full Text PDF

Bioenergy Production from Sorghum Distillers Grains via Dark Fermentation.

BioTech (Basel)

December 2024

Department of Environmental Science and Engineering, Feng Chia University, Taichung City 40724, Taiwan.

Sorghum distillers grains (SDGs) produced from a sorghum liquor company were used for generating biohydrogen via dark fermentation at pH 4.5-6.5 and 55 °C with a batch test, and the biohydrogen electricity generation potential was evaluated.

View Article and Find Full Text PDF

Background: Biohydrogen production from agro-industrial wastes through dark fermentation offers several advantages including eco-friendliness, sustainability, and the simplicity of the process. This study aimed to produce biohydrogen from fruit and vegetable peel wastes (FVPWs) by anaerobic fermentative bacteria isolated from domestic wastewater. Kinetic analysis of the produced biohydrogen by five isolates on a glucose medium was analyzed using a modified Gompertz model (MGM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!