Broadcast-spawning marine mussels rely on high sperm motility for successful fertilization in the dynamic seawater environment. Mitochondria are typically considered the primary source of ATP generation via oxidative phosphorylation (OXPHOS); however, the ATP generation pathways of mussel sperm have not been fully characterized. To better understand the importance of both OXPHOS and glycolysis for mussel sperm function, we conducted experiments inhibiting these pathways in sperm from Mytilus edulis. Our results indicate that oligomycin, an inhibitor of the mitochondrial ATP synthase, immediately decreased sperm motility rate, velocity, and ATP content, while 2-deoxy-d-glucose, a glycolysis inhibitor, had no effect. The OXPHOS inhibitor rotenone also partially reduced sperm motility rate and velocity. Interestingly, no evidence was found for the inhibitors' effects on the content of energy-rich compounds (lipids, carbohydrates, and proteins) in the mussels' sperm, indicating only modest energy demand to fuel sperm motility. Based on these findings, we conclude that OXPHOS is the primary energy source for sperm motility in marine mussels. Our study sheds light on the intricacies of mussel sperm physiology and highlights the importance of understanding the energy requirements for successful fertilization in broadcast-spawning marine invertebrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpb.2023.110909 | DOI Listing |
Front Endocrinol (Lausanne)
December 2024
Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background: Techniques for sperm cryopreservation have exhibited their potential in male fertility preservation. The use of frozen-thawed sperm in fertilization (IVF) cycles is widespread today. However, many studies reported that cryopreservation might have adverse effects on sperm DNA integrity, motility, and fertilization, probably due to cold shock, intra- and extracellular ice crystals, and excess reactive oxygen species (ROS).
View Article and Find Full Text PDFBMC Womens Health
December 2024
Department of Obstetrics and Gynecology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
Introduction: IUDs are effective, reversible and safe methods of contraception. The mechanism of action of IUDs as a group is inducing endometrial atrophy, apoptosis, altering tubal motility; preventing sperm permeability, fertilization, and implantation. Complications of IUD include menstrual disturbance, pelvic pain, and increased risk of ectopic pregnancy with contraceptive failure, device expulsion, uterine perforation or transmural migration with misplacement of the device.
View Article and Find Full Text PDFPol J Vet Sci
September 2024
Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, 23119, Elazığ, Turkey.
Bisphenol A (BPA), an endocrine disrupting chemical, is an environmental toxicant widely used in the production of polycarbonate plastics, epoxy resins and paints. Ganoderma lucidum (GDL) is a plant with biological activities widely used in Chinese medicine. The present study aims to determine the effects of GDL against testicular dysfunction in rats exposed to BPA.
View Article and Find Full Text PDFPol J Vet Sci
September 2024
Ruminant and Swine Clinic, Faculty of Veterinary Medicine, Veterinary University Brno, Palackého třída 1946/1, 612 42 Brno, Czech Republic.
This study focused on continuous monitoring of the immunocontraceptive effect of Improvac® vaccine on the sexual activity of male goats determined by measuring plasma testosterone levels, testicular biometric and ejaculate examination. The animals in the experimental group (n=12) were administered two doses of 2 ml of Improvac® at a four-week interval; the animals in the control group (n=5) received 2 ml of saline. Blood collection, semen collection and testicular measurements were performed at 14-day intervals.
View Article and Find Full Text PDFJ Toxicol
December 2024
Department of Agriculture Botany (Genetics), Faculty of Agriculture (Girls Branch), Al-Azhar University, Cairo, Egypt.
The environmental xenobiotic aluminum chloride (AlCl) destroys reproduction via free radicals. The present study aimed at evaluating the impact of purple and white eggplant on rat fertility when exposed to AlCl. A total of 36 male albino rats were divided into six groups: a negative control, the second given AlCl (17 mg/kg b.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!