MicroRNA-512-3p mediates Trypanosoma cruzi-induced apoptosis during ex vivo infection of human placental explants.

Placenta

Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile. Electronic address:

Published: November 2023

Introduction: Upon infection, Trypanosoma cruzi, a protozoan parasite, crosses the placental barrier and causes congenital Chagas disease. Ex vivo infection of human placental explants (HPEs) with the parasite induces apoptotic cell death. This cellular process involves changes in gene expression, which are partially regulated by miRNAs. In this study, we investigated the role of miR-512-3p, a highly expressed miRNA in the placenta, in parasite-induced apoptosis.

Methods: HPE cells were transfected with antagomirs or mimics of miR-512-3p and subsequently challenged with the parasite. The expression levels of miR-512-3p, caspase 3, caspase 8, and Livin were measured using RT-qPCR, and apoptotic cell death was analyzed based on caspase activity and DNA fragmentation assays.

Results: Targeted inhibition of miR-512-3p effectively prevented parasite-induced expression and enzymatic activity of caspase 3 and caspase 8. However, it did not completely prevent DNA fragmentation, indicating the involvement of other factors in this process. Furthermore, the findings suggest that Livin may be regulated by miR-512-3p.

Discussion: Our findings suggest that miR-512-3p modulates parasite-induced apoptosis in the trophoblast. By understanding the mechanisms involved in this process, we can gain insights into the pathogenesis of congenital Chagas disease and develop targeted therapeutic strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.placenta.2023.10.009DOI Listing

Publication Analysis

Top Keywords

vivo infection
8
infection human
8
human placental
8
placental explants
8
congenital chagas
8
chagas disease
8
apoptotic cell
8
cell death
8
caspase caspase
8
dna fragmentation
8

Similar Publications

Purpose: Following the initial reports demonstrating the feasibility of immunoPET imaging of simian immunodeficiency virus (SIV) using gp120-targeting monoclonal antibodies in non-human primates, replication efforts of the imaging system in human immunodeficiency virus (HIV)-infected individuals have yielded conflicting results. Herein, we used two anti-gp120 antibodies, 7D3 and ITS103.01LS-F(ab'), to interrogate the reproducibility of gp120-targeting probes for immunoPET imaging of SIV in rhesus macaques.

View Article and Find Full Text PDF

Multifunctional hydrogels hold significant promise for promoting the healing of infected wounds but often fall short in inhibiting antibiotic-resistant pathogens, and their clinical translation is limited by complex preparation processes and high costs. In this study, a multifunctional hydrogel is developed by combining metal-phenolic networks (MPNs) formed by tannic acid (TA) and gallium ions (Ga⁺) with chitosan (CS) through a simple one-step method. The resulting CS-TA-Ga⁺ (CTG) hydrogel is cost-effective and exhibits desirable properties, including injectability, self-healing, pH responsiveness, hemostasis, antioxidant, anti-inflammatory, and antibacterial activities.

View Article and Find Full Text PDF

Background: Patients with post-COVID condition (PCC) and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) experience symptoms potentially associated with small fiber neuropathy (SFN).

Methods: A sample of 90 participants, comprising 30 PCC patients, 30 ME/CFS patients, and 30 healthy controls (HC), matched by sex and age, was assessed. Neuropathic, autonomic, and fatigue symptoms were measured with TaskForce Monitor, the Sudoscan, heat and cold evoked potentials, In Vivo Corneal Confocal Microscopy (IVCCM), and specialized questionaries.

View Article and Find Full Text PDF

Ubiquitin-mediated proteolysis is a crucial mechanism in plant defenses against pathogens. However, the role of E3 ubiquitin ligases in the maize (Zea mays) defense response against Rhizoctonia solani, a major soil-borne fungal pathogen that causes banded leaf and sheath blight, remains unclear. We previously identified the maize ZmPUB19 gene, which encodes a U-box E3 ubiquitin ligase and is upregulated upon R.

View Article and Find Full Text PDF

Progranulin Plays a Protective Role in Pneumococcal Meningitis by Inhibiting Pyroptosis.

Immun Inflamm Dis

February 2025

Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing Medical University, Chongqing, People's Republic of China.

Objective: Pneumococcal meningitis is a serious infectious disease with a high mortality rate and a global presence, and survivors have different degrees of neurological sequelae as a consequence of the host response to the infection. Progranulin (PGRN) is a multifunctional autocrine growth factor that is also a major immunoregulator. We want to investigate the role for PGRN in Pneumococcal meningitis in vivo and in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!