A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-Performance Neuromorphic Computing and Logic Operation Based on a Self-Assembled Vertically Aligned Nanocomposite SrTiO:MgO Film Memristor. | LitMetric

High-Performance Neuromorphic Computing and Logic Operation Based on a Self-Assembled Vertically Aligned Nanocomposite SrTiO:MgO Film Memristor.

ACS Nano

Institute of Life Science and Green Development, Key Laboratory of Brain-like Neuromorphic Devices and Systems of Hebei Province, College of Electronic and Information Engineering, Hebei University, Baoding 071002, P. R. China.

Published: November 2023

Neuromorphic computing based on memristors capable of in-memory computing is promising to break the energy and efficiency bottleneck of well-known von Neumann architectures. However, unstable and nonlinear conductance updates compromise the recognition accuracy and block the integration of neural network hardware. To this end, we present a highly stable memristor with self-assembled vertically aligned nanocomposite (VAN) SrTiO:MgO films that achieve excellent resistive switching with low set/reset voltage variability (4.7%/-5.6%) and highly linear conductivity variation (nonlinearity = 0.34) by spatially limiting the conductive channels at the vertical interfaces. Various synaptic behaviors are simulated by continuously modulating the conductance. Especially, convolutional image processing using diverse crossbar kernels is demonstrated, and the artificial neural network achieves an overwhelming recognition accuracy of up to 97.50% for handwritten digits. Even under the perturbation of Poisson noise (λ = 10), 6% Salt and Pepper noise, and 5% Gaussian noise, the high recognition accuracies are retained at 95.43%, 94.56%, and 95.97%, respectively. Importantly, the logic memory function is proven experimentally based on the nonvolatile properties. This work provides a material system and design idea to achieve high-performance neuromorphic computing and logic operation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.3c06510DOI Listing

Publication Analysis

Top Keywords

neuromorphic computing
12
high-performance neuromorphic
8
computing logic
8
logic operation
8
self-assembled vertically
8
vertically aligned
8
aligned nanocomposite
8
recognition accuracy
8
neural network
8
computing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!