Heterochromatin plays essential roles in eukaryotic genomes, such as regulating genes, maintaining genome integrity and silencing repetitive DNA elements. Identifying genome-wide heterochromatin regions is crucial for studying transcriptional regulation. We propose the Human Heterochromatin Chromatin Database (HHCDB) for archiving heterochromatin regions defined by specific or combined histone modifications (H3K27me3, H3K9me2, H3K9me3) according to a unified pipeline. 42 839 743 heterochromatin regions were identified from 578 samples derived from 241 cell-types/cell lines and 92 tissue types. Genomic information is provided in HHCDB, including chromatin location, gene structure, transcripts, distance from transcription start site, neighboring genes, CpG islands, transposable elements, 3D genomic structure and functional annotations. Furthermore, transcriptome data from 73 single cells were analyzed and integrated to explore cell type-specific heterochromatin-related genes. HHCDB affords rich visualization through the UCSC Genome Browser and our self-developed tools. We have also developed a specialized online analysis platform to mine differential heterochromatin regions in cancers. We performed several analyses to explore the function of cancer-specific heterochromatin-related genes, including clinical feature analysis, immune cell infiltration analysis and the construction of drug-target networks. HHCDB is a valuable resource for studying epigenetic regulation, 3D genomics and heterochromatin regulation in development and disease. HHCDB is freely accessible at http://hhcdb.edbc.org/.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10767959PMC
http://dx.doi.org/10.1093/nar/gkad954DOI Listing

Publication Analysis

Top Keywords

heterochromatin regions
20
heterochromatin
8
human heterochromatin
8
heterochromatin-related genes
8
hhcdb
6
regions
5
hhcdb database
4
database human
4
regions heterochromatin
4
heterochromatin plays
4

Similar Publications

HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis.

Front Biosci (Landmark Ed)

January 2025

The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.

Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.

View Article and Find Full Text PDF

The intraspecies and interspecies Comparative Genomic Hybridization (CGH) between the closely related Cebidae species, capuchin monkeys (, ), and the tamarins () was performed to analyze their genomes. In particular, this approach determines balanced and unbalanced repetitive DNA sequence distribution and reveals dynamics during evolution. Capuchin monkeys are considered the most ancestral group with conserved syntenies compared to the hypothetical ancestral New World monkeys' karyotype.

View Article and Find Full Text PDF

The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In , the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of , a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy.

View Article and Find Full Text PDF

Introduction: Recent research revealed that Tau plays critical roles in various neuronal functions. We previously demonstrated that destabilization and nuclear delocalization of Tau alter the expression of glutamatergic genes, mediating early neuronal damage.

Methods: In this study, we discovered that changes in Tau availability are linked to global alterations in gene expression that affect multiple neuronal pathways.

View Article and Find Full Text PDF

Protective immune responses require close interactions between conventional (Tconv) and regulatory T cells (Treg). The extracellular mediators and signaling events that regulate the crosstalk between these CD4 T cell subsets have been extensively characterized. However, how Tconv translate Treg-dependent suppressive signals at the chromatin level remains largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!