COVID-19 is a deadly pandemic caused by Corona virus leading to millions of deaths worldwide. Till today no medicine was available to cure this disease. This study selected 262 potential bioactive natural products derived from mangroves to inhibit the main protease (Mpro) and receptor-binding domain (RBD) protein of the COVID-19 virus. All the ligands were subjected to Adsorption Digestion Metabolism Excretion and Toxicity (ADMET) predictions and docking studies using AutodockVina. Among all the ligands, NP_143 (Shearinine A) and NP_242 (Amentoflavone), having the highest docking score of 10.2 and 10.1 Kj/mole, respectively, were picked for 100 ns of Molecular Dynamics using GROMACS. The trajectories generated were used to estimate Root mean square deviation (RMSD), Root mean square fluctuations (RMSF), Radius of Gyrations (RG), Solvent accessible surface area (SASA), and Hydrogen bonds. From the data generated, both the ligands have good binding ability at the active site of Mpro protein and do not deviate much. They have strong interactions with the amino acids during the 100 ns of simulations and can thus be considered potential drug candidates.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2023.2275185 | DOI Listing |
Mol Divers
January 2025
School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China.
The p53 protein is regarded as the "Guardian of the Genome," but its mutation is tumor progression and present in more than half of malignant tumors. The pro-metastatic property of mutant p53 makes a strong argument for targeting mutant p53 with new therapeutic strategies. However, mutant p53 was considered as a challenging target for drug discovery due to the lack of small molecular binding pockets.
View Article and Find Full Text PDFNPJ Regen Med
January 2025
Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, USA.
Cardiomyocytes (CMs) lost during ischemic cardiac injury cannot be replaced due to their limited proliferative capacity. Calcium is an important signal transducer that regulates key cellular processes, but its role in regulating CM proliferation is incompletely understood. Here we show a robust pathway for new calcium signaling-based cardiac regenerative strategies.
View Article and Find Full Text PDFSci Rep
January 2025
A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia.
Nat Commun
January 2025
Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96, Göteborg, Sweden.
The performance of Cu-exchanged chabazite (Cu-CHA) for the ammonia-assisted selective catalytic reduction of NO (NH-SCR) depends critically on the presence of paired complexes. Here, a machine-learning force field augmented with long-range Coulomb interactions is developed to investigate the effect of Al-distribution and Cu-loading on the mobility and pairing of complexes. Performing unbiased and constrained molecular dynamics simulations, we obtain unique information inaccessible to first-principle calculations and experiments.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, P. R. China.
Photoluminescence is one of the most intriguing properties of metal nanoclusters derived from their molecular-like electronic structure, however, achieving high photoluminescence quantum yield (PLQY) of metal core-dictated fluorescence remains a formidable challenge. Here, we report efficient suppression of the total structural vibrations and rotations, and management of the pathways and rates of the electron transfer dynamics to boost a near-unity absolute PLQY, by decorating progressive addition of cations. Specifically, with the sequential addition of Zn, Ag, and Tb into the 3-mercaptopropionic acids capped Au nanoclusters (NCs), the low-frequency vibration of the metal core progressively decreases from 144.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!