Vaccine immunogenicity still represents an unmet need in specific populations, such as people from developing countries and "edge populations". Both intrinsic and extrinsic factors, such as the environment, age, and dietary habits, influence cellular and humoral immune responses. The human microbiota represents a potential key to understanding how these factors impact the immune response to vaccination, with its modulation being a potential step to address vaccine immunogenicity. The aim of this narrative review is to explore the intricate interactions between the microbiota and the immune system in response to vaccines, highlighting the state of the art in gut microbiota modulation as a novel therapeutic approach to enhancing vaccine immunogenicity and laying the foundation for future, more solid data for its translation to the clinical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611107PMC
http://dx.doi.org/10.3390/vaccines11101609DOI Listing

Publication Analysis

Top Keywords

vaccine immunogenicity
12
immune response
8
factors influencing
4
microbiota
4
influencing microbiota
4
microbiota modulating
4
vaccine
4
modulating vaccine
4
immune
4
vaccine immune
4

Similar Publications

Vibriosis caused by Vibrio anguillarum has been an important bacterial disease in cultured rainbow trout (Oncorhynchus mykiss). In the present study, we evaluated the protective efficacy of a vaccine that consists of formalin-killed (FK) V. anguillarum and the alr genes knockout auxotrophic-live (AL) V.

View Article and Find Full Text PDF

Safety and immunogenicity of Ad26.COV2.S in adolescents: Phase 2 randomized clinical trial.

Hum Vaccin Immunother

December 2025

Crucell Integration, Janssen Research and Development, Beerse, Belgium.

We conducted a randomized, Phase 2 trial to assess the safety and humoral immunogenicity of reduced doses/dose volume of the standard dose of Ad26.COV2.S COVID-19 vaccine (5 × 10 viral particles [vp]) in healthy adolescents aged 12-17 years.

View Article and Find Full Text PDF

Peptide vaccines based on tumor antigens face the challenges of rapid clearance of peptides, low immunogenicity, and immune suppressive tumor microenvironment. However, the traditional solution mainly uses exogenous substances as adjuvants or carriers to enhance innate immune responses, but excessive inflammation can damage adaptive immunity. In the current study, we propose a straightforward novel nanovaccine strategy by employing homologous human ferritin light chain for minimized innate immunity and dendritic cell (DC) targeting, the cationic KALA peptide for enhanced cellular uptake, and suppressor of cytokine signaling 1 (SOCS1) siRNA for modulating DC activity.

View Article and Find Full Text PDF

Background: Vaccine co-administration can increase vaccination coverage. We assessed the safety, reactogenicity, and immunogenicity of concomitant administration of Ad26.COV2.

View Article and Find Full Text PDF

Cutaneous reactions to vaccination.

J Dtsch Dermatol Ges

January 2025

Department of Dermatology and Allergology, University Hospital Marburg, Philipps University Marburg, Marburg, Germany.

Vaccination is a fundamental principle of preventive health care. Administration of the vaccine, which contains the antigen(s) of a pathogen, activates the immune system and provides protection against infection. The immunogenicity and allergenicity of a vaccine may lead to various adverse reactions, depending on the responsiveness and susceptibility of the vaccinated individual.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!