Influenza vaccines faced significant challenges in achieving sufficient protective efficacy and production efficiency in the past. In recent decades, novel influenza vaccines, characterized by efficient and scalable production, advanced platforms, and new adjuvant technologies, have overcome some of these weaknesses and have been widely licensed. Furthermore, researchers are actively pursuing the development of next-generation and universal influenza vaccines to provide comprehensive protection against potential pandemic subtypes or strains. However, new challenges have emerged as these novel vaccines undergo evaluation and authorization. In this review, we primarily outline the critical challenges and advancements in research and development (R&D) and highlight the improvements in regulatory responses for influenza vaccines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610648 | PMC |
http://dx.doi.org/10.3390/vaccines11101573 | DOI Listing |
Vaccine
January 2025
Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
Introduction: While it remains impossible to predict the timing of the next influenza pandemic, novel avian influenza A viruses continue to be considered a significant threat.
Methods: A Phase II study was conducted in healthy adults aged 18-64 years to assess the safety and immunogenicity of two intramuscular doses of pre-pandemic 2017 influenza A(H7N9) inactivated vaccine administered 21 days apart. Participants were randomized (n = 105 in each of Arms 1-3) to receive 3.
Vaccine
January 2025
Vaxine Pty Ltd, Warradale, Adelaide, SA 5046, Australia; Australian Respiratory and Sleep Medicine Institute Ltd, Adelaide, SA 5042, Australia. Electronic address:
There is a need to improve the effectiveness of seasonal influenza vaccines. Influenza vaccines based on recombinant hemagglutinin offer advantages over traditional approaches. We asked whether Advax-CpG55.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Lanzhou 730030, China.
Madin-Darby Canine Kidney (MDCK) cells are a key cell line for influenza vaccine production, due to their high viral yield and low mutation resistance. In our laboratory, we established a tertiary cell bank (called M60) using a standard MDCK cell line imported from American Type Culture Collection (ATCC) in the USA. Due to their controversial tumourigenicity, we domesticated non-tumourigenic MDCK cells (named CL23) for influenza vaccine production via monoclonal screening in the early stage of this study, and the screened CL23 cells were characterised based on their low proliferative capacity, which had certain limitations in terms of expanding their production during cell resuscitation.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
Bone marrow stromal antigen 2 (BST2) is a host-restriction factor that plays multiple roles in the antiviral defense of innate immune responses, including the inhibition of viral particle release from virus-infected cells. BST2 may also be involved in the endothelial adhesion and migration of monocytes, but its importance in the immune system is still unclear. Immune cell adhesion and migration are closely related to the initiation of immune responses.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Patient-Centered Research, Evidera, London, UK.
Background: Seasonal vaccination is the mainstay of human influenza prevention. Licensed influenza vaccines are regularly updated to account for viral mutations and antigenic drift and are standardised for their haemagglutinin content. However, vaccine effectiveness remains suboptimal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!