We developed a NitroPure Nitrocellulose (NPN) membrane-based method for sampling and storing grapevine sap for grapevine virus detection. We devised an efficient nucleic acid extraction method for the NPN membrane, resulting in 100% amplification success for grapevine leafroll-associated virus 2 (GLRaV2) and 3 (GLRaV3), grapevine rupestris stem pitting-associated virus (GRSPaV), grapevine virus A, grapevine virus B, and grapevine red blotch virus (GRBV). This method also allowed the storage of recoverable nucleic acid for 18 months at room temperature. We created a sampling kit to survey GLRaV2, GLRaV3, and GRBV in Japanese vineyards. We tested the kits in the field in 2018 and then conducted mail-in surveys in 2020-2021. The results showed a substantial prevalence of GLRaV3, with 48.5% of 132 sampled vines being positive. On the other hand, only 3% of samples tested positive for GLRaV2 and none for GRBV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10612103 | PMC |
http://dx.doi.org/10.3390/v15102102 | DOI Listing |
Virology
December 2024
Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada. Electronic address:
Grapevine Pinot gris virus (GPGV) is an emerging grapevine virus associated with grapevine leaf mottling and deformation (GLMD) disease. Being a recently identified virus, the molecular biology, pathological properties, and etiological complexity of GPGV remain poorly studied. Previous research revealed that GPGV comprises genetically different variants, some encoding a larger movement protein (MP) and others a shorter MP due to a C/T polymorphic site in ORF2 encoding MP.
View Article and Find Full Text PDFPlant Dis
December 2024
UC Davis, Foundation Plant Services, Davis, California, United States;
Quarantine and certification programs exist to prevent the entry or spread of harmful pests and pathogens into agricultural systems. Their common objective is to identify pathogen-free source material through the application of validated testing methods for subsequent release for propagation. Tests must be accurate, efficient and cost-effective.
View Article and Find Full Text PDFJ Plant Physiol
December 2024
Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21 000, Split, Croatia. Electronic address:
Arbuscular mycorrhizal fungi (AMF) can be beneficial for plants exposed to abiotic and biotic stressors. Although widely present in agroecosystems, AMF influence on crop responses to virus infection is underexplored, particularly in woody plant species such as grapevine. Here, a two-year greenhouse experiment was set up to test the hypothesis that AMF alleviate virus-induced oxidative stress in grapevine.
View Article and Find Full Text PDFPlant Pathol J
October 2024
Institut National de la Recherche Agronomique de Tunisie, Université de Carthage, Laboratoire de Protection des Végétaux LR16INRAT04, Rue Hedi Karray, 1004 ElMenzah, Tunis, Tunisia.
Mosaic is the most common viral disease affecting fig plants. Although the Fig mosaic virus is the leading cause of mosaic disease, other viruses are also involved. High-throughput sequencing was used to assess viral infections in fig plants with mosaic.
View Article and Find Full Text PDFViruses
September 2024
Department of Plant Pathology, University of California-Davis, Davis, CA 95616, USA.
The grapevine fleck virus (GFkV) is a ubiquitous grapevine-infecting virus found worldwide, is associated with the grapevine fleck complex, and is often found in mixed infections with viruses of the grapevine leafroll complex and/or vitiviruses. Although GFkV has been studied for a long time, limited sequence information is available in the public databases. In this study, the GFkV sequence data available in GenBank and data generated at the Foundation Plant Services, University of California, Davis, were used to perform nucleotide sequence comparisons, construct a phylogenetic tree, and develop a new RT-qPCR assay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!