A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

African Swine Fever Vaccine Candidate ASFV-G-ΔI177L Produced in the Swine Macrophage-Derived Cell Line IPKM Remains Genetically Stable and Protective against Homologous Virulent Challenge. | LitMetric

ASFV vaccine candidate ASFV-G-ΔI177L has been shown to be highly efficacious in inducing protection against challenges with the parental virus, the Georgia 2010 isolate, as well as against field strains isolated from Vietnam. ASFV-G-ΔI177L has been shown to produce protection even when used at low doses (10 HAD) and shows no residual virulence even when administered at high doses (10 HAD) or evaluated for a relatively long period of time (6 months). ASFV-G-ΔI177L stocks can only be massively produced in primary cell macrophages. Alternatively, its modified version (ASFV-G-ΔI177L/ΔLVR) grows in a swine-derived cell line (PIPEC), acquiring significant genomic modifications. We present here the development of ASFV-G-ΔI177L stocks in a swine macrophage cell line, IPKM, and its protective efficacy when evaluated in domestic pigs. Successive passing of ASFV-G-ΔI177L in IPKM cells produces minimal genomic changes. Interestingly, a stock of ASFV-G-ΔI177L obtained after 10 passages (ASFV-G-ΔI177Lp10) in IPKM cells showed very small genomic changes when compared with the original virus stock. ASFV-G-ΔI177Lp10 conserves similar growth kinetics in primary swine macrophage cultures than the original parental virus ASFV-G-ΔI177L. Pigs infected with 10 HAD of ASFV-G-ΔI177Lp10 developed a strong virus-specific antibody response and were completely protected against the challenge with the parental virulent field isolate Georgia 2010. Therefore, IPKM cells could be an effective alternative for the production of ASFV vaccine stocks for those vaccine candidates exclusively growing in swine macrophages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10612016PMC
http://dx.doi.org/10.3390/v15102064DOI Listing

Publication Analysis

Top Keywords

ipkm cells
12
vaccine candidate
8
asfv-g-Δi177l
8
candidate asfv-g-Δi177l
8
cell ipkm
8
asfv vaccine
8
parental virus
8
georgia 2010
8
asfv-g-Δi177l stocks
8
swine macrophage
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!