Assessing Pulmonary Epithelial Damage in Hantavirus Cardiopulmonary Syndrome: Challenging the Predominant Role of Vascular Endothelium through sRAGE as a Potential Biomarker.

Viruses

Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Av. Plaza #680, San Carlos de Apoquindo, Las Condes, Santiago 7610658, Chile.

Published: September 2023

Hantavirus cardiopulmonary syndrome (HCPS) is a severe respiratory illness primarily associated with microvascular endothelial changes, particularly in the lungs. However, the role of the pulmonary epithelium in HCPS pathogenesis remains unclear. This study explores the potential of soluble Receptors for Advanced Glycation End-products (sRAGE) as a biomarker for assessing pulmonary epithelial damage in severe HCPS, challenging the prevailing view that endothelial dysfunction is the sole driver of this syndrome. We conducted a cross-sectional study on critically ill HCPS patients, categorizing them into mild HCPS, severe HCPS, and negative control groups. Plasma sRAGE levels were measured, revealing significant differences between the severe HCPS group and controls. Our findings suggest that sRAGE holds promise as an indicator of pulmonary epithelial injury in HCPS and may aid in tracking disease progression and guiding therapeutic strategies. This study brings clarity on the importance of investigating the pulmonary epithelium's role in HCPS pathogenesis, offering potential avenues for enhanced diagnostic precision and support in this critical public health concern.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611316PMC
http://dx.doi.org/10.3390/v15101995DOI Listing

Publication Analysis

Top Keywords

pulmonary epithelial
12
severe hcps
12
hcps
9
assessing pulmonary
8
epithelial damage
8
hantavirus cardiopulmonary
8
cardiopulmonary syndrome
8
hcps severe
8
hcps pathogenesis
8
damage hantavirus
4

Similar Publications

G-Protein Coupled Receptor, Class C, Group 5, Member A (GPRC5A) has been extensively studied in lung and various epithelial cancers. Nevertheless, its role in the skin remains to be elucidated. In this study, we sought to investigate the function of this receptor in skin biology.

View Article and Find Full Text PDF

TRIF-TAK1 signaling suppresses caspase-8/3-mediated GSDMD/E activation and pyroptosis in influenza A virus-infected airway epithelial cells.

iScience

January 2025

College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P.R. China.

Pyroptosis plays an important role in attracting innate immune cells to eliminate infected niches. Our study focuses on how influenza A virus (IAV) infection triggers pyroptosis in respiratory epithelial cells. Here, we report that IAV infection induces pyroptosis in a human and murine airway epithelial cell line.

View Article and Find Full Text PDF

Background: Alpha-1 antitrypsin (AAT)-deficient individuals have a greater risk for developing COPD than individuals with normal AAT levels.

Methods: This was a double-blind, randomised, parallel group, placebo-controlled trial to examine the safety and tolerability of "Kamada-AAT for Inhalation" (inhaled AAT) in subjects with AAT deficiency, and to explore its effect on AAT and biomarkers in the lung epithelial lining fluid (ELF). 36 patients with severe AAT deficiency were randomised 2:1 to receive 80 mg or 160 mg inhaled AAT or placebo once daily for 12 weeks.

View Article and Find Full Text PDF

Mucus hypersecretion is a trait of chronic obstructive pulmonary disease (COPD) associated with poorer outcomes. As it may be present before airway obstruction, its early treatment may have a preventive role. This narrative review of the literature presents the role of mucus dysfunction in COPD, its pathophysiology, and the rationale for the use of N-acetylcysteine (NAC).

View Article and Find Full Text PDF

Deciphering key nano-bio interface descriptors to predict nanoparticle-induced lung fibrosis.

Part Fibre Toxicol

January 2025

State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical School, Soochow University, Suzhou, Jiangsu, 215123, China.

Background: The advancement of nanotechnology underscores the imperative need for establishing in silico predictive models to assess safety, particularly in the context of chronic respiratory afflictions such as lung fibrosis, a pathogenic transformation that is irreversible. While the compilation of predictive descriptors is pivotal for in silico model development, key features specifically tailored for predicting lung fibrosis remain elusive. This study aimed to uncover the essential predictive descriptors governing nanoparticle-induced pulmonary fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!