Currently, e-noses are used for measuring odorous compounds at wastewater treatment plants. These devices mimic the mammalian olfactory sense, comprising an array of multiple non-specific gas sensors. An array of sensors creates a unique set of signals called a "gas fingerprint", which enables it to differentiate between the analyzed samples of gas mixtures. However, appropriate advanced analyses of multidimensional data need to be conducted for this purpose. The failures of the wastewater treatment process are directly connected to the odor nuisance of bioreactors and are reflected in the level of pollution indicators. Thus, it can be assumed that using the appropriately selected methods of data analysis from a gas sensors array, it will be possible to distinguish and classify the operating states of bioreactors (i.e., phases of normal operation), as well as the occurrence of malfunction. This work focuses on developing a complete protocol for analyzing and interpreting multidimensional data from a gas sensor array measuring the properties of the air headspace in a bioreactor. These methods include dimensionality reduction and visualization in two-dimensional space using the principal component analysis (PCA) method, application of data clustering using an unsupervised method by Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, and at the last stage, application of extra trees as a supervised machine learning method to achieve the best possible accuracy and precision in data classification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610685 | PMC |
http://dx.doi.org/10.3390/s23208578 | DOI Listing |
Luminescence
January 2025
School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
Crystal Violet (CV) is a vibrant and harmful dye known for its toxicity to aquatic life and potential carcinogenic effects on humans. This study explores the removal of CV through photocatalysis driven by visible light, as well as examining the antibacterial and antibiofilm characteristics of zinc oxide nanoparticles (ZnO NPs) synthesized from the aerial roots of Ficus benghalensis. Various characterization techniques were employed to confirm the optical properties, crystal lattices, and morphology of ZnO NPs.
View Article and Find Full Text PDFACS ES T Water
January 2025
Department of Statistics & Data Science, Dietrich College of Humanities and Social Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
Since the start of the coronavirus-19 pandemic, the use of wastewater-based epidemiology (WBE) for disease surveillance has increased throughout the world. Because wastewater measurements are affected by external factors, processing WBE data typically includes a normalization step in order to adjust wastewater measurements (e.g.
View Article and Find Full Text PDFHeliyon
July 2024
Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.
The pulp and paper industry, a major global sector, supports economies and jobs while contributing to various products. While providing valuable products, and despite Best Available Techniques (BAT) being used, managing wastewater effectively remains a key area for developing technologies and alternatives for environmental protection. Activated sludge (AS) systems are commonly used for effluent treatment, where microorganisms composition influences reactor efficiency.
View Article and Find Full Text PDFFront Antibiot
February 2024
School of Biosciences & Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom.
Antimicrobial resistance is a growing public health concern, increasingly recognized as a silent pandemic across the globe. Therefore, it is important to monitor all factors that could contribute to the emergence, maintenance and spread of antimicrobial resistance. Environmental antibiotic pollution is thought to be one of the contributing factors.
View Article and Find Full Text PDFFront Antibiot
June 2024
Environmental Engineering Department, Faculty of Civil Engineering, Istanbul Technical University, Istanbul, Türkiye.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!