Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, we propose a novel low-complexity hand gesture recognition framework via a multiple Frequency Modulation Continuous Wave (FMCW) radar-based sensing system. In this considered system, two radars are deployed distributively to acquire motion vectors from different observation perspectives. We first independently extract reflection points of the interested target from different radars by applying the proposed neighboring reflection points detection method after processing the traditional 2-dimensional Fast Fourier Transform (2D-FFT). The obtained sufficient corresponding information of detected reflection points, e.g., distances, velocities, and angle information, can be exploited to synthesize motion velocity vectors to achieve a high signal-to-noise ratio (SNR) performance, which does not require knowledge of the relative position of the two radars. Furthermore, we utilize a long short-term memory (LSTM) network as well as the synthesized motion velocity vectors to classify different gestures, which can achieve a significantly high accuracy of gesture recognition with a 1600-sample data set, e.g., 98.0%. The experimental results also illustrate the robustness of the proposed gesture recognition systems, e.g., changing the environment background and adding new gesture performers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611228 | PMC |
http://dx.doi.org/10.3390/s23208551 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!