Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Global precipitation is becoming increasingly intense due to the extreme climate. Therefore, creating new technology to manage water resources is crucial. To create a sustainable urban and ecological environment, a water level and water quality control system implementing artificial intelligence is presented in this research. The proposed smart monitoring system consists of four sensors (two different liquid level sensors, a turbidity and pH sensor, and a water oxygen sensor), a control module (an MCU, a motor, a pump, and a drain), and a power and communication system (a solar panel, a battery, and a wireless communication module). The system focuses on low-cost Internet of Things (IoT) devices along with low power consumption and high precision. This proposal collects rainfall from the preceding 10 years in the application region as well as the region's meteorological bureau's weekly weather report and uses artificial intelligence to compute the appropriate water level. More importantly, the adoption of dynamic adjustment systems can reserve and modify water resources in the application region more efficiently. Compared to existing technologies, the measurement approach utilized in this study not only achieves cost savings exceeding 60% but also enhances water level measurement accuracy by over 15% through the successful implementation of water level calibration decisions utilizing multiple distinct sensors. Of greater significance, the dynamic adjustment systems proposed in this research offer the potential for conserving water resources by more than 15% in an effective manner. As a result, the adoption of this technology may efficiently reserve and distribute water resources for smart cities as well as reduce substantial losses caused by anomalous water resources, such as floods, droughts, and ecological concerns.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611331 | PMC |
http://dx.doi.org/10.3390/s23208540 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!