Resonant Gas Sensing in the Terahertz Spectral Range Using Two-Wire Phase-Shifted Waveguide Bragg Gratings.

Sensors (Basel)

Engineering Physics, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada.

Published: October 2023

The development of low-cost sensing devices with high compactness, flexibility, and robustness is of significance for practical applications of optical gas sensing. In this work, we propose a waveguide-based resonant gas sensor operating in the terahertz frequency band. It features micro-encapsulated two-wire plasmonic waveguides and a phase-shifted waveguide Bragg grating (WBG). The modular semi-sealed structure ensures the controllable and efficient interaction between terahertz radiation and gaseous analytes of small quantities. WBG built by superimposing periodical features on one wire shows high reflection and a low transmission coefficient within the grating stopband. Phase-shifted grating is developed by inserting a Fabry-Perot cavity in the form of a straight waveguide section inside the uniform gratings. Its spectral response is optimized for sensing by tailoring the cavity length and the number of grating periods. Gas sensor operating around 140 GHz, featuring a sensitivity of 144 GHz/RIU to the variation in the gas refractive index, with resolution of 7 × 10 RIU, is developed. In proof-of-concept experiments, gas sensing was demonstrated by monitoring the real-time spectral response of the phase-shifted grating to glycerol vapor flowing through its sealed cavity. We believe that the phase-shifted grating-based terahertz resonant gas sensor can open new opportunities in the monitoring of gaseous analytes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610679PMC
http://dx.doi.org/10.3390/s23208527DOI Listing

Publication Analysis

Top Keywords

resonant gas
12
gas sensing
12
gas sensor
12
phase-shifted waveguide
8
waveguide bragg
8
sensor operating
8
gaseous analytes
8
phase-shifted grating
8
spectral response
8
gas
6

Similar Publications

The exploration of pure organic ultra-long room temperature phosphorescence (RTP) materials has emerged as a research hotspot in recent years. Herein, a simple strategy for fabricating long-afterglow polymer aerogels with three-dimensional ordered structures and environmental monitoring capabilities is proposed. Based on the non-covalent interactions between pectin (PC) and melamine formaldehyde (MF), a composite aerogel (PCMF@phenanthrene) (PCMF@PA) doped with phosphorescent organic small molecules was constructed.

View Article and Find Full Text PDF

Low Molecular Weight Biobased Aromatics from Pyrolysis Liquids Using Zeolites: Yield Improvements by Using Pyrolysis Oil Fractions.

ACS Omega

January 2025

Green Chemical Reaction Engineering, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.

Pyrolysis liquids from lignocellulosic biomass have the potential to be used as a feed for aromatics such as benzene, toluene, and xylenes (BTX) using catalytic upgrading with zeolites. We here report an experimental study on the conversion of various pyrolysis oil fractions to determine the most suitable one for BTX synthesis. For this purpose, the pyrolysis liquid was fractionated using several extraction/distillation steps to give four fractions with different chemical compositions.

View Article and Find Full Text PDF

To enhance the safety of coal mining operations and improve the efficiency of gas extraction, hydraulic flushing technology has been widely used in low permeability coal seams. This study aims to investigate the mechanism of hydraulic flushing by conducting experiments focusing on four aspects: sample strength, punching pressure, punching position and vibration direction. The results show that an increase in hydraulic flushing pressure leads to a deeper impact groove, whereas higher sample strength results in a shallower groove.

View Article and Find Full Text PDF

The oceanic dissolved organic matter (DOM) reservoir is one of Earth's largest carbon pools, yet the factors contributing to its recalcitrance and persistence remain poorly understood. Here, we employed ultra-high resolution mass spectrometry (UHRMS) to examine the molecular dynamics of DOM from terrestrial, marine and mixed sources during bio-incubation over weekly, monthly, and one year time spans. Using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), we classified DOM into three distinct categories (Consumed, Resistant and Product) based on their presence or absence at the start and end of the incubation.

View Article and Find Full Text PDF

Metamaterials are pushing the limits of traditional materials and are fascinating frontiers in scientific innovation. Mechanical metamaterials (MMs) are a category of metamaterials that display properties and performances that cannot be realized in conventional materials. Exploring the mechanical properties and various aspects of vibration and damping control is becoming a crucial research area.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!