Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As globalization accelerates, the linguistic diversity and semantic complexity of in-vehicle communication is increasing. In order to meet the needs of different language speakers, this paper proposes an interactive attention-based contrastive learning framework (IABCL) for the field of in-vehicle dialogue, aiming to effectively enhance cross-lingual natural language understanding (NLU). The proposed framework aims to address the challenges of cross-lingual interaction in in-vehicle dialogue systems and provide an effective solution. IABCL is based on a contrastive learning and attention mechanism. First, contrastive learning is applied in the encoder stage. Positive and negative samples are used to allow the model to learn different linguistic expressions of similar meanings. Its main role is to improve the cross-lingual learning ability of the model. Second, the attention mechanism is applied in the decoder stage. By articulating slots and intents with each other, it allows the model to learn the relationship between the two, thus improving the ability of natural language understanding in languages of the same language family. In addition, this paper constructed a multilingual in-vehicle dialogue (MIvD) dataset for experimental evaluation to demonstrate the effectiveness and accuracy of the IABCL framework in cross-lingual dialogue. With the framework studied in this paper, IABCL improves by 2.42% in intent, 1.43% in slot, and 2.67% in overall when compared with the latest model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611118 | PMC |
http://dx.doi.org/10.3390/s23208501 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!