Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
PbS films grown on quartz substrates by the chemical bath deposition method were annealed in an O atmosphere to investigate the role of oxygen in the sensitization process at different annealing temperatures. The average grain size of the PbS films gradually increased as the annealing temperature increased from 400 °C to 700 °C. At an annealing temperature of 650 °C, the photoresponsivity and detectivity reached 1.67 A W and 1.22 × 10 cm Hz W, respectively. The role of oxides in the sensitization process was analyzed in combination with X-ray diffraction and scanning electron microscopy results, and a three-dimensional network model of the sensitization mechanism of PbS films was proposed. During the annealing process, O functioned as a p-type impurity, forming p-type PbS layers with high hole concentrations on the surface and between the PbS grains. As annealing proceeds, the p-type PbS layers at the grain boundaries interconnect to form a three-dimensional network structure of hole transport channels, while the unoxidized p-type PbS layers act as electron transport channels. Under bias, photogenerated electron-hole pairs were efficiently separated by the formed p-p charge separation junction, thereby reducing electron-hole recombination and facilitating a higher infrared response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611095 | PMC |
http://dx.doi.org/10.3390/s23208413 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!