Cellulose-Based Conductive Materials for Energy and Sensing Applications.

Polymers (Basel)

Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.

Published: October 2023

Cellulose-based conductive materials (CCMs) have emerged as a promising class of materials with various applications in energy and sensing. This review provides a comprehensive overview of the synthesis methods and properties of CCMs and their applications in batteries, supercapacitors, chemical sensors, biosensors, and mechanical sensors. Derived from renewable resources, cellulose serves as a scaffold for integrating conductive additives such as carbon nanotubes (CNTs), graphene, metal particles, metal-organic frameworks (MOFs), carbides and nitrides of transition metals (MXene), and conductive polymers. This combination results in materials with excellent electrical conductivity while retaining the eco-friendliness and biocompatibility of cellulose. In the field of energy storage, CCMs show great potential for batteries and supercapacitors due to their high surface area, excellent mechanical strength, tunable chemistry, and high porosity. Their flexibility makes them ideal for wearable and flexible electronics, contributing to advances in portable energy storage and electronic integration into various substrates. In addition, CCMs play a key role in sensing applications. Their biocompatibility allows for the development of implantable biosensors and biodegradable environmental sensors to meet the growing demand for health and environmental monitoring. Looking to the future, this review emphasizes the need for scalable synthetic methods, improved mechanical and thermal properties, and exploration of novel cellulose sources and modifications. Continued innovation in CCMs promises to revolutionize sustainable energy storage and sensing technologies, providing environmentally friendly solutions to pressing global challenges.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610528PMC
http://dx.doi.org/10.3390/polym15204159DOI Listing

Publication Analysis

Top Keywords

energy storage
12
cellulose-based conductive
8
conductive materials
8
energy sensing
8
sensing applications
8
batteries supercapacitors
8
energy
5
ccms
5
materials
4
materials energy
4

Similar Publications

Polymer material innovations for a green hydrogen economy.

Chem Commun (Camb)

January 2025

Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore.

Polymeric materials are ubiquitous in modern life. Similar to many other technological applications, polymer materials are essential in advancing the green hydrogen economy, offering solutions for hydrogen production, storage, transport, and utilization. In production, polymeric proton exchange membranes in water electrolysers enable efficient green hydrogen generation using renewable energy.

View Article and Find Full Text PDF

Manganese oxides are a promising cathode material for aqueous zinc-ion batteries (AZIBs), but thin-film configurations remain underexplored. This study investigates the electrochemical dynamics of 60 nm thin MnO thin films, fabricated via RF magnetron reactive sputtering. It addresses the highest reported capacity (25 mAh/g) in thin film form, stability over 500 cycles, effective performance across varying current rates, surpassing previous studies and challenges such as phase stability, and capacity fading over extended cycling, aiming to enhance uniformity, minimizing diffusion barriers for improved performance.

View Article and Find Full Text PDF

2D Nanochannel Interlayer Realizing High-Performance Lithium-Sulfur Batteries.

Adv Mater

January 2025

Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.

Commercialization of lithium-sulfur (Li-S) batteries is largely limited by polysulfide shuttling and sluggish kinetics. Herein, 2D nanochannel interlayer composed of alternatively-stacked porous silica nanosheets (PSN) and TiCT-MXene are developed. The 2D nanochannels with selective cation transport characteristics facilitate lithium ion rapid transport, while reject the translocation of polysulfide anions across the separator.

View Article and Find Full Text PDF

The development of aqueous zinc metal batteries (AZMBs) is hampered by dendrites and side reactions induced by reactive HO. In this study, a hydrated eutectic electrolyte with restrictive water consisting of zinc trifluoromethanesulfonate (Zn(OTf)), 1,3-propanediol (PDO), and water is developed to improve the stability of the anode/electrolyte interface in AZMBs via the formation of a water-deficient interface. Additionally, PDO participates in the Zn solvation structure and inhibits the movement of water molecules.

View Article and Find Full Text PDF

Modulating Electronic Spin State of Perovskite Fluoride by Ni─F─Mn Bond Activating the Dynamic Site of Oxygen Reduction Reaction.

Small

January 2025

Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.

Establishing the relationship between catalytic performance and material structure is crucial for developing design principles for highly active catalysts. Herein, a type of perovskite fluoride, NHMnF, which owns strong-field coordination including fluorine and ammonia, is in situ grown on carbon nanotubes (CNTs) and used as a model structure to study and improve the intrinsic catalytic activity through heteroatom doping strategies. This approach optimizes spin-dependent orbital interactions to alter the charge transfer between the catalyst and reactants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!