β-Tricalcium Phosphate-Loaded Chitosan-Based Thermosensitive Hydrogel for Periodontal Regeneration.

Polymers (Basel)

Periodontology Unit, UCL Eastman Dental Institute, 21 University Street, London WC1E 6DE, UK.

Published: October 2023

The current treatment for periodontitis is aimed at resolving gingival inflammation, whilst complete periodontal tissue regeneration is not predictable, and it represents a therapeutic challenge. Injectable biomaterials hold tremendous potential in dental tissue regeneration. This study aimed to investigate the ability of an injectable thermosensitive β-tricalcium phosphate (β-TCP) and chitosan-based hydrogel to carry cells and promote periodontal tissue regeneration. In this study, different concentrations of β-TCP-loaded chitosan hydrogels were prepared (0%, 2%, 4%, or 6% β-TCP, 10% β-glycerol phosphate, and 1.5% chitosan). The characteristics of the hydrogels were tested using rheology, a scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), degradation, and biological analyses. The new biomaterial showed a sol-gel transformation ability at body temperature and exhibited excellent chemical and physical characteristics, whilst the existence of β-TCP enhanced the structure and the properties of the hydrogels. The SEM confirmed the three-dimensional networks of the hydrogels, and the typical rheological properties of strong gel were observed. The EDX and XRD validated the successful incorporation of β-TCP, and similar patterns between different groups were found in terms of the FTIR spectra. The stable structure of the hydrogels under 100 °C was confirmed via DSC. Biological tests such as Alamar Blue assay and Live/Dead staining confirmed the remarkable biocompatibility of the hydrogels with pre-osteoblast MC3T3-E1 and human gingival fibroblast (HGF) cells for 14 days, and the results were validated with confocal imaging. This preliminary study shows great promise for the application of the β-TCP-loaded thermosensitive chitosan hydrogels as a scaffold in periodontal bone and soft tissue repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611029PMC
http://dx.doi.org/10.3390/polym15204146DOI Listing

Publication Analysis

Top Keywords

tissue regeneration
12
periodontal tissue
8
regeneration study
8
chitosan hydrogels
8
hydrogels
7
β-tricalcium phosphate-loaded
4
phosphate-loaded chitosan-based
4
chitosan-based thermosensitive
4
thermosensitive hydrogel
4
periodontal
4

Similar Publications

Extracellular vesicles: essential agents in critical bone defect repair and therapeutic enhancement.

Mol Biol Rep

January 2025

Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.

Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.

View Article and Find Full Text PDF

Emerging techniques of additive manufacturing, such as vat-based three-dimensional (3D) bioprinting, offer novel routes to prepare personalized scaffolds of complex geometries. However, there is a need to develop bioinks suitable for clinical translation. This study explored the potential of bacterial-sourced methacrylate levan (LeMA) as a bioink for the digital light processing (DLP) 3D bioprinting of bone tissue scaffolds.

View Article and Find Full Text PDF

Multifunctional electrospinning periosteum: Development status and prospect.

J Biomater Appl

January 2025

State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China.

In the repair of large bone defects, loss of the periosteum can result in diminished osteoinductive activity, nonunion, and incomplete regeneration of the bone structure, ultimately compromising the efficiency of bone regeneration. Therefore, the research and development of tissue-engineered periosteum which can replace the periosteum function has become the focus of current research. The functionalized electrospinning periosteum is expected to mimic the natural periosteum and enhance bone repair processes more effectively.

View Article and Find Full Text PDF

Sweet syndrome (SS), which is characterised by fever and erythematous tender skin lesions, has been shown to be associated with lymphoma. However, there are limited reported experiences on the wound care of SS in patients with lymphoma. This case report presents the wound care of SS in a patient with anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma (ALK+ALCL).

View Article and Find Full Text PDF

Background: Exosomes are extracellular vesicles, composed of a phospholipid bilayer, that are primarily derived from stem cells. The contents of exosomes can be incorporated into the tissue in which they are introduced, which presents a unique therapeutic option.

Aims: Exosomes have been investigated as a treatment for a number of medical ailments, but the literature supporting these indications is inconclusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!