A Magnesium Carbonate Hydroxide Nanofiber/Poly(Vinylidene Fluoride) Composite Membrane for High-Rate and High-Safety Lithium-Ion Batteries.

Polymers (Basel)

College of Mechanical and Electrical Engineering, National Engineering Research Center for Intelligent Electrical Vehicle Power System (Qingdao), Qingdao University, Qingdao 266071, China.

Published: October 2023

AI Article Synopsis

  • Researchers developed a new composite membrane by combining poly(vinylidene fluoride) (PVDF) with magnesium carbonate hydroxide (MCH) nanofibers, aiming to enhance lithium-ion battery (LIB) performance and safety.
  • The composite membrane shows exceptional properties, including high porosity (85.9%), excellent electrolyte wettability (539.8%), improved ionic conductivity (1.4 mS·cm), and lower interfacial resistance (93.3 Ω), outperforming traditional membranes.
  • It remains stable up to 180 °C, reducing the risk of thermal runaway, and exhibits better charge-discharge performance and flame resistance when tested in high-temperature environments.

Article Abstract

Simultaneously high-rate and high-safety lithium-ion batteries (LIBs) have long been the research focus in both academia and industry. In this study, a multifunctional composite membrane fabricated by incorporating poly(vinylidene fluoride) (PVDF) with magnesium carbonate hydroxide (MCH) nanofibers was reported for the first time. Compared to commercial polypropylene (PP) membranes and neat PVDF membranes, the composite membrane exhibits various excellent properties, including higher porosity (85.9%) and electrolyte wettability (539.8%), better ionic conductivity (1.4 mS·cm), and lower interfacial resistance (93.3 Ω). It can remain dimensionally stable up to 180 °C, preventing LIBs from fast internal short-circuiting at the beginning of a thermal runaway situation. When a coin cell assembled with this composite membrane was tested at a high temperature (100 °C), it showed superior charge-discharge performance across 100 cycles. Furthermore, this composite membrane demonstrated greatly improved flame retardancy compared with PP and PVDF membranes. We anticipate that this multifunctional membrane will be a promising separator candidate for next-generation LIBs and other energy storage devices, in order to meet rate and safety requirements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611082PMC
http://dx.doi.org/10.3390/polym15204120DOI Listing

Publication Analysis

Top Keywords

composite membrane
20
magnesium carbonate
8
carbonate hydroxide
8
high-rate high-safety
8
high-safety lithium-ion
8
lithium-ion batteries
8
pvdf membranes
8
membrane
6
composite
5
hydroxide nanofiber/polyvinylidene
4

Similar Publications

Hydrogen peroxide (HO) was used to modify a natural polymer, sesbania gum (SG), to prepare oxidized sesbania gum (OSG) with the aim of investigating the physicochemical properties, antimicrobial activity of polyethylene oxide (PEO), OSG, and ε-poly(lysine) (ε-PL) composite fibre membranes and their applications in fresh-cut mango preservation. The PEO/OSG/ε-PL composite fibre membranes were successfully prepared via solution blow spinning (SBS) technology. The results of a series of characterizations revealed that ε-PL was successfully loaded into the fibrous membranes, exhibited good biocompatibility, and ε-PL was better encapsulated, with the membranes.

View Article and Find Full Text PDF

Detecting changes of testicular interstitial cell membranes with a fluorescent probe after incubation and cryopreservation with cryoprotective agents.

Cryobiology

January 2025

The National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova st, 61000 Kharkiv, Ukraine; Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 6 Trinklera st, 61022 Kharkiv, Ukraine. Electronic address:

Membrane alterations are among central factors predetermining cell survival during cryopreservation. In the present research, we tested some serum-/xeno-free cryoprotective compositions including dimethyl sulfoxide (MeSO) and polymers for their osmotic impact and toxicity towards testicular interstitial cells (ICs). IC survival was determined after their contact with MeSO, dextran (D40), hydroxyethyl starch (HES), polyethylene glycols (PEG1500 and PEG400), or after cryopreservation and cryoprotective agent (CPA) removal.

View Article and Find Full Text PDF

Thin-film composite polyamide (TFC PA) membranes hold promise for energy-efficient liquid separation, but achieving high permeance and precise separation membrane via a facile approach that is compatible with present manufacturing line remains a great challenge. Herein, we demonstrate the use of lignin alkali (LA) derived from waste of paper pulp as an aqueous phase additive to regulate interfacial polymerization (IP) process for achieving high performance nanofiltration (NF) membrane. Various characterizations and molecular dynamics simulations revealed that LA can promote the diffusion and partition of aqueous phase monomer piperazine (PIP) molecules into organic phase and their uniform dispersion on substrate, accelerating the IP reaction and promoting greater interfacial instabilities, thus endowing formation of TFC NF membrane with an ultrathin, highly cross-linked, and crumpled PA layer.

View Article and Find Full Text PDF

Synaptoneurolipidomics: lipidomics in the study of synaptic function.

Trends Biochem Sci

January 2025

Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany. Electronic address:

The brain is an exceptionally lipid-rich organ with a very complex lipid composition. Lipids are central in several neuronal processes, including membrane formation and fusion, myelin packing, and lipid-mediated signal transmission. Lipid diversity is associated with the evolution of higher cognitive abilities in primates, is affected by neuronal activity, and is instrumental for synaptic plasticity, illustrating that lipids are not static components of synaptic membranes.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma (ccRCC) is one of the most challenging neoplasms because of its phenotypic variability and intratumoral heterogeneity. Because of its variability, ccRCC is a good test bench for the application of new technological approaches to unveiling its intricacies. Multiplex immunofluorescence (mIF) is an emerging method that enables the simultaneous and detailed assessment of tumor and stromal cell subpopulations in a single tissue section.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!