A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancing Textile Water Repellency with Octadecyltrichlorosilane (OTS) and Hollow Silica Nanoparticles. | LitMetric

Superhydrophobic coatings have attracted substantial attention owing to their potential application in various industries. Conventional textiles used in daily life are prone to staining with water and household liquids, necessitating the development of water-repellent and stain-resistant coatings. In this study, we fabricated a highly water-repellent superhydrophobic PET fabric by using an eco-friendly water-based coating process. Fluorine-free octadecyltrichlorosilane (OTS) solutions with various wt.% of hollow silica (HS) nanoparticles were used to produce a superhydrophobic surface via a facile dip coating method. Our findings revealed that the incorporation of HS nanoparticles substantially increased the water contact angle, with higher concentrations resulting in enhanced water repellency and increased surface roughness. The treated fabrics had a remarkable water contact angle of 152.4° ± 0.8°, demonstrating their superhydrophobic fiber surface. In addition, the durability of these superhydrophobic properties was investigated via a laundry procedure, which showed that the fabrics maintained their water repellency even after 20 laundering cycles. EDX and XRD analyses confirmed that the morphological evaluations did not reveal any substantial structural alterations. Significantly, the fibers maintained their strength and durability throughout the testing, enduring only minor hollow SiO nanoparticle loss. This eco-friendly and cost-effective method holds great potential for application in apparel and other industries, offering an effective solution to resist water stains and improve performance in various contexts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610727PMC
http://dx.doi.org/10.3390/polym15204065DOI Listing

Publication Analysis

Top Keywords

water repellency
12
octadecyltrichlorosilane ots
8
hollow silica
8
silica nanoparticles
8
potential application
8
water contact
8
contact angle
8
water
7
superhydrophobic
5
enhancing textile
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!