Cancer is one of the most well-studied diseases and there have been significant advancements over the last few decades in understanding its molecular and cellular mechanisms. Although the current treatments (e.g., chemotherapy, radiotherapy, gene therapy and immunotherapy) have provided complete cancer remission for many patients, cancer still remains one of the most common causes of death in the world. The main reasons for the poor response rates for different cancers include the lack of drug specificity, drug resistance and toxic side effects (i.e., in healthy tissues). For addressing the limitations of conventional cancer treatments, nanotechnology has shown to be an important field for constructing different nanoparticles for destroying cancer cells. Due to their size (i.e., less than 1 μm), nanoparticles can deliver significant amounts of cancer drugs to tumors and are able to carry moieties (e.g., folate, peptides) for targeting specific types of cancer cells (i.e., through receptor-mediated endocytosis). Liposomes, composed of phospholipids and an interior aqueous core, can be used as specialized delivery vehicles as they can load different types of cancer therapy agents (e.g., drugs, photosensitizers, genetic material). In addition, the ability to load imaging agents (e.g., fluorophores, radioisotopes, MRI contrast media) enable these nanoparticles to be used for monitoring the progress of treatment. This review examines a wide variety of different liposomes for cancer theranostics, with the different available treatments (e.g., photothermal, photodynamic) and imaging modalities discussed for different cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610083 | PMC |
http://dx.doi.org/10.3390/pharmaceutics15102448 | DOI Listing |
Elife
March 2025
Department of Pathology, Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
Background: Cervical adenocarcinoma (ADC) is more aggressive compared to other types of cervical cancer (CC), such as squamous cell carcinoma (SCC). The tumor immune microenvironment (TIME) and tumor heterogeneity are recognized as pivotal factors in cancer progression and therapy. However, the disparities in TIME and heterogeneity between ADC and SCC are poorly understood.
View Article and Find Full Text PDFCancer Med
March 2025
Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
Background: Tumor metastasis is one of the main causes of death in cancer patients; however, the mechanism controlling metastasis is unclear. The posttranscriptional regulation of metastasis-related genes mediated by AT-rich interactive domain-containing protein 4A (Arid4a), an RNA-binding protein (RBP), has not been elucidated.
Methods: Bioinformatic analysis, qRT-PCR, immunohistochemistry, and immunoblotting were employed to determine the expression of Arid4a in breast tumor tissues and its association with the survival of cancer patients.
ACS Biomater Sci Eng
March 2025
Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261000 P. R. China.
Improvements in tumor therapy require a combination of strategies where targeted treatment is critical. We developed a new versatile nanoplatform, MA@E, that generates high levels of reactive oxygen species (ROS) with effective photothermal conversions in the removal of tumors. Enhanced stability liposomes were employed as carriers to facilitate the uniform distribution and stable storage of encapsulated gold nanorods (AuNRs) and Mn-MIL-100 metal-organic frameworks, with efficient delivery of MA@E to the cytoplasm.
View Article and Find Full Text PDFLaryngoscope
March 2025
Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA.
Development
March 2025
State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
In domestic animals, the mechanisms by which the luteinizing hormone (LH) surge induces oocyte meiosis resumption and maturation through follicular somatic cells remain unclear. Given the pivotal roles of histone deacetylases (HDACs) in regulating gametogenesis, this study investigated the roles of HDACs in follicular granulosa cells (GCs) in mediating LH action during oocyte maturation in pigs. The results showed that histone deacetylase 4 (HDAC4) levels in cultured GCs increased in a time-dependent manner with follicle-stimulating hormone (FSH) stimulation but significantly decreased with LH treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!