Faba bean is considered one of the most prominent grain legumes, with high protein content for human food consumption and livestock feed. The present study evaluated the nature of gene action and determined the genetic diversity among different populations of three crosses for resistance to foliar diseases at the molecular level. Analysis of variance exposed significant differences among the generations for all measured traits. Both dominance and additive gene effects were essential, but dominance genes, for the most part, exhibited greater effects than additive ones. This indicates an essential role for dominant genes alongside the additives one in inheriting such traits. The third cross (Marina × Giza 40) gave desired significant and positive (additive × additive) values for the number of pods/plant, seeds/plant, and seed yield/plant, in addition to desirable negative values for chocolate spot and rust characteristics. Furthermore, assessing the lines under study using seven SCoT primers disclosed three bands with recorded molecular weights of 260, 207, and 178 bp, generated by SCoT-1, SCoT-4, and SCoT-7 primers, respectively. These bands exist in the resistant parent (Marina), which could be attributed to the high-disease-resistance phenotypes, and they are absent in the sensitive parent (Giza 40) and other putative sensitive lines. Based on the molecular profiles and the genetic similarity between parents and the selected lines, the highest similarity value (0.91) was detected between Marina genotype and BC, revealing a high foliar disease resistance. Meanwhile, Giza 40 (susceptible to foliar diseases) exhibited the maximum value (0.93) with F. Additionally, cluster analysis based on genetic relationships was performed, and a high level of correlation between the results of PCR-based SCoT analysis and the foliar disease reactions was observed in the field. Consequently, this study concluded that SCoT markers created reliable banding profiles for evaluating genetic polymorphism among faba bean lines, which could be a foundation for developing an efficient breeding program.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610329PMC
http://dx.doi.org/10.3390/plants12203645DOI Listing

Publication Analysis

Top Keywords

foliar disease
12
faba bean
12
disease resistance
8
scot markers
8
foliar diseases
8
foliar
5
potential genetic
4
genetic yield
4
yield foliar
4
resistance faba
4

Similar Publications

Identification of two QTLs for web blotch resistance in peanut (Arachis hypogaea L.) based on BSA-seq.

BMC Plant Biol

December 2024

Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China.

Background: Peanut (Arachis hypogaea L.) is a globally important oilseed and cash crop. Web blotch is one of the most important peanut foliar diseases, causing severe yield losses worldwide.

View Article and Find Full Text PDF

Potential use of Apis mellifera L. honey in the management of the cucurbit powdery mildew caused by Podosphaera xanthii (Castagne) under greenhouse conditions.

Rev Argent Microbiol

December 2024

Facultad de Agronomía, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico; Universidad Autónoma de Occidente, Unidad Regional Culiacán, Culiacán, Sinaloa, Mexico. Electronic address:

Powdery mildew by Podosphaera xanthii (Castagne) is a major disease of greenhouse cucurbitaceous crops worldwide. Honey by honeybees has been reported as an antimicrobial for diseases in humans, animals, and plants. The aim of this study was to assess Apis mellifera honey against P.

View Article and Find Full Text PDF

The Utility of Visual and Olfactory Maize Leaf Cues in Host Finding by Adult (Lepidoptera: Noctuidae).

Plants (Basel)

November 2024

Henan Key Laboratory of Agricultural Pest Monitoring and Control, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, International Joint Research Laboratory for Crop Protection of Henan, No. 0 Entomological Radar Field Scientific Observation and Research Station of Henan Province, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.

The fall armyworm, (Lepidoptera: Noctuidae) (FAW), is an invasive and destructive polyphagous pest that poses a significant threat to global agricultural production. The FAW mainly damages maize, with a particular preference for V3-V5 (third to fifth leaf collar) plant stages in northern China. How the FAW moth precisely locates maize plants in the V3-V5 stage at night remains unclear.

View Article and Find Full Text PDF

Foodborne disease presents a substantial challenge to researchers, as foliar water intake greatly influences pathogen internalization via stomata. Comprehending plant-pathogen interactions, especially under fluctuating humidity and temperature circumstances, is crucial for formulating ways to prevent pathogen ingress and diminish foodborne hazards. This study introduces a computational model utilizing neural networks to anticipate pathogen internalization via stomata, contrasting with previous research that emphasized biocontrol techniques.

View Article and Find Full Text PDF

Stomata, the small pores on the surfaces of leaves and stems, are crucial for gas exchange in plants and also play a role in defense against pathogens. The stomatal movement is not only influenced by surrounding light conditions but also by the presence of foliar pathogens. To put it more crisply, certain light wavelengths such as blue or strong red light, cause stomatal opening, which tragically makes it easier for bacteria to enter through opened stomata and causes disease progression in plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!