Tropical Red Macroalgae Cultivation with a Focus on Compositional Analysis.

Plants (Basel)

Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, Golden, CO 80401, USA.

Published: October 2023

To create carbon efficient sources of bioenergy feedstocks and feedstuff for aquaculture and terrestrial livestock, it is critical to develop and commercialize the most efficient seaweed cultivation approach with a sustainable nutrient input supply. Here, we present data for a novel, onshore tropical macroalgae cultivation system, based on influent deep seawater as the nutrient and carbon sources. Two red algal species were selected, and as the basis for growth optimization. Highest productivity in small-scale cultivation was demonstrated with in the 10% deep seawater (64.7 µg N L) treatment, growing at up to 26% specific growth rate day with highest yields observed at 247.5 g m day fresh weight. The highest yields for were measured with the addition of 10% deep seawater up to 8.8% specific growth rate day and yields at 63.3 g fresh weight m day equivalent. Biomass should be culled weekly or biweekly to avoid density limitations, which likely contributed to a decrease in SGR over time. With a measured 30-40% carbon content of the ash-free dry weight (20-30% of the dry weight) biomass, this translates to an almost 1:1 CO capture to biomass ratio. The compositional fingerprint of the high carbohydrate content of both and makes for an attractive feedstock for downstream biorefinery applications. By focusing on scaling and optimizing seaweed farming technologies for large-scale onshore farms, the opportunities for yield potential, adaptability to cultivation conditions, and meeting global sustainability goals through novel, carbon-negative biomass sources such as seaweed can be realized.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10609988PMC
http://dx.doi.org/10.3390/plants12203524DOI Listing

Publication Analysis

Top Keywords

deep seawater
12
macroalgae cultivation
8
10% deep
8
specific growth
8
growth rate
8
rate day
8
highest yields
8
fresh weight
8
dry weight
8
cultivation
5

Similar Publications

Settling aggregates transport organic matter from the ocean surface to the deep sea and seafloor. Though plankton communities impact carbon export, how specific organisms and their interactions affect export efficiency is unknown. Looking at 15 years of eDNA sequences (18S-V4) from settling and sedimented organic matter in the Fram Strait, here we observe that most phylogenetic groups were transferred from pelagic to benthic ecosystems.

View Article and Find Full Text PDF

By analyzing the chemical characteristics of the formation water in the tight sandstone reservoirs of the P2x8 and P1s1 in the southern Ordos Basin, combined with rock mineral composition, reservoir physical properties, and well gas testing data, the genesis mechanism of formation water and its guiding role in gas reservoir development were discussed. The results show that the formation water is derived from the mixture of syngenetic seawater and meteoric water and has undergone remarkable modification by water-rock interactions, showing characteristics of Ca enrichment and Mg and SO depletion. The albitization of plagioclase in reservoir rock components causes Ca excess and Na deficiency in formation water, while the chloritization of albite leads to the increase of Na.

View Article and Find Full Text PDF

In the context of evaluating the environmental impact of deep-sea tailing practices, we conducted a case study on the Bayer effluent released into the Mediterranean Sea by the French Gardanne alumina plant. This effluent results from the filtration of red mud, which has previously been discharged into the Cassidaigne canyon for 55 years. In 2015, regulatory changes permitted the released of a filtered effluent instead of the slurry.

View Article and Find Full Text PDF

Recent studies have unveiled the deep sea as a rich biosphere, populated by species descended from shallow-water ancestors post-mass extinctions. Research on genomic evolution and microbial symbiosis has shed light on how these species thrive in extreme deep-sea conditions. However, early adaptation stages, particularly the roles of conserved genes and symbiotic microbes, remain inadequately understood.

View Article and Find Full Text PDF

Discovery of potentially degrading microflora of different types of plastics based on long-term in-situ incubation in the deep sea.

Environ Res

January 2025

Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.

Plastic waste that ends up in the deep sea is becoming an increasing concern. However, it remains unclear whether there is any microflora capable of degrading plastic within this vast ecosystem. In this study, we investigated the bacterial communities associated with different types of plastic-polyamide-nylon 4, 6 (PA), polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS)-after one year of in situ incubation in the pelagic deep sea of the Western Pacific.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!