AI Article Synopsis

  • Tin dioxide is a promising material widely studied for use in semiconductor gas sensors due to its chemical properties and ability to interact with gases.
  • The effectiveness of tin dioxide in sensors depends on the type and concentration of modifiers applied to its surface, affecting its sensitivity and selectivity.
  • The review focuses on recent methods for analyzing SnO-based nanocomposites, highlighting the importance of understanding their composition and structure using advanced analytical techniques like ICP MS and TXRF.

Article Abstract

Tin dioxide has huge potential and is widely studied and used in different fields, including as a sensitive material in semiconductor gas sensors. The specificity of the chemical activity of tin dioxide in its interaction with the gas phase is achieved via the immobilization of various modifiers on the SnO surface. The type of additive, its concentration, and the distribution between the surface and the volume of SnO crystallites have a significant effect on semiconductor gas sensor characteristics, namely sensitivity and selectivity. This review discusses the recent approaches to analyzing the composition of SnO-based nanocomposites (the gross quantitative elemental composition, phase composition, surface composition, electronic state of additives, and mutual distribution of the components) and systematizes experimental data obtained using a set of analytical methods for studying the concentration of additives on the surface and in the volume of SnO nanocrystals. The benefits and drawbacks of new approaches to the high-accuracy analysis of SnO-based nanocomposites by ICP MS and TXRF methods are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608681PMC
http://dx.doi.org/10.3390/ma16206733DOI Listing

Publication Analysis

Top Keywords

tin dioxide
12
gas sensor
8
semiconductor gas
8
surface volume
8
volume sno
8
sno-based nanocomposites
8
additives nanocrystalline
4
nanocrystalline tin
4
dioxide progress
4
progress characterization
4

Similar Publications

Organic Crosslinked Tin Oxide Mitigating Buried Interface Defects for Efficient and Stable Perovskite Solar Cells.

Angew Chem Int Ed Engl

January 2025

Southern University of Science and Technology, Department of Materials Science and Engineering, NO.1088,Xueyuan Avenue,Nanshan District, 518055, Shenzhen, CHINA.

Tin dioxide (SnO2) stands as a promising material for the electron transport layer (ETL) in perovskite solar cells (PSCs) attributed to its superlative optoelectronic properties. The attainment of superior power conversion efficiency hinges critically on the preparation of high-quality SnO2 thin films. However, conventional nanoparticle SnO2 colloids often suffer from inherent issues such as numerous oxygen vacancy defects and film non-uniformity.

View Article and Find Full Text PDF

Herein, porous SnO microspheres in a three-dimensional (3D) hierarchical architecture were successfully synthesized via a facile hydrothermal route utilizing d-(+)-glucose and cetyltrimethylammonium bromide (CTAB), which act as reducing and structure-directing agents, respectively. Controlled adjustment of the CTAB to glucose mole ratio, reaction temperature, reaction time, and the calcination parameters all provided important clues toward optimizing the final morphologies of SnO with exceptional structural stability and reasonable monodispersity. Electron microscopy analysis revealed that microspheres formed were hierarchical self-assemblies of numerous primary SnO nanoparticles of ∼3-8 nm that coalesce together to form nearly monodispersed and ordered spherical structures of sizes in the range of 230-250 nm and are appreciably porous.

View Article and Find Full Text PDF

Chemical nanosensors based on nanoparticles of tin dioxide and graphene-decorated tin dioxide were developed and characterized to detect low NO concentrations. Sensitive layers were prepared by the drop casting method. SEM/EDX analyses have been used to investigate the surface morphology and the elemental composition of the sensors.

View Article and Find Full Text PDF

This paper presents the results of a study on the characteristics of semiconductor sensors based on thin SnO films modified with antimony, dysprosium, and silver impurities and dispersed double Pt/Pd catalysts deposited on the surface to detect carbon monoxide (CO). An original technology was developed, and ceramic targets were made from powders of Sn-Sb-O, Sn-Sb-Dy-O, and Sn-Sb-Dy-Ag-O systems synthesized by the sol-gel method. Films of complex composition were obtained by RF magnetron sputtering of the corresponding targets, followed by technological annealing at various temperatures.

View Article and Find Full Text PDF

Protocol for depositing transparent conductive Ta-doped SnO film by hollow cathode gas flow sputtering technology.

STAR Protoc

December 2024

Institute für High-Frequency and Semiconductor-System Technologies, Technische Universität Berlin, Einsteinufer 25, 10587 Berlin, Germany. Electronic address:

Article Synopsis
  • A new transparent conductive material, Ta-doped SnO (SnO: Ta), is highlighted as a promising substitute for traditional transparent conductive oxides (TCOs) due to its low surface roughness and low resistivity.
  • The text outlines a specific method for creating tin oxide films using hollow cathode gas flow sputtering technology, covering the preparation and cleaning of substrates as well as the deposition process.
  • Additionally, it provides guidance for measuring the optical and electrical properties of the resulting films, referencing more detailed procedures from the work of Huo et al. for further information.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!