In this paper, in order to upcycle carbon fibers (CF), the changes in their mechanical and chemical properties in accordance with time and temperature were investigated, in addition to the oxygen functional group mechanism. When acetone as a chemical desizing agent was used, treatment with acetone for 0.5 h at 60 °C was the optimal condition for the complete removal of the sizing agent, and there was no deterioration in tensile strength. At 25 °C, the carbonyl group (C=O) and hydroxyl group (C-O) declined in comparison to commercial CF, but a novel lactone group (O=C-O) was created. At 60 °C, the oxygen present in the sizing agent was removed and C=O, C-O, and O=C-O decreased. On the contrary, in the case of thermal desizing in an inert gas nitrogen atmosphere, by increasing the temperature, functional groups combining carbon and oxygen were reduced, because nitrogen and oxygen atoms combined with C=O and C-O on the CF surface were eliminated in the form of CO, NO, CO, NO, and O. When desizing via chemical and thermal methods, the amount of functional groups combining carbon and oxygen on the CF surface decreased. Desizing was performed as a pretreatment for surface treatment, so the methods and conditions were different, and related research is insufficient. In this study, we attempted to derive the optimal conditions for desizing treatment by identifying the surface characteristics and mechanisms according to chemical and thermal desizing treatment methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608084PMC
http://dx.doi.org/10.3390/ma16206732DOI Listing

Publication Analysis

Top Keywords

chemical thermal
12
functional groups
12
sizing agent
8
c=o c-o
8
thermal desizing
8
groups combining
8
combining carbon
8
carbon oxygen
8
treatment methods
8
desizing treatment
8

Similar Publications

The amount of incorporation of linear alcohols and ethers in HSiWO·6HO (HSiW·6HO, 50 wt %) supported on silica (SiO) was estimated by a conventional volumetric method and infrared (IR) spectroscopy, and the state of involved molecules was elucidated. First, the attribution of the key IR band at 2200 cm, which was observed for the water of crystallization of HSiW·6HO, to HO species (protons) was verified by coincident observation of thermogravimetric-differential thermal analysis, X-ray diffraction (XRD), and IR spectroscopy during thermal treatment in addition to the isotope exchange with DO. The 2200 cm band was gradually decreased in intensity by increasing the amount of adsorption of pyridine and was totally consumed at saturation, while the volumetric method provided the accurate number of included pyridine molecules.

View Article and Find Full Text PDF

Extremely low lattice thermal conductivity in light-element solid materials.

Natl Sci Rev

January 2025

Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.

Lattice thermal conductivity ( ) is of great importance in basic sciences and in energy conversion applications. However, low- crystalline materials have only been obtained from heavy elements, which typically exhibit poor stability and possible toxicity. Thus, low- materials composed of light elements should be explored.

View Article and Find Full Text PDF

Designing a 2D van der Waals oxide with lone-pair electrons as chemical scissor.

Natl Sci Rev

January 2025

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.

Two-dimensional (2D) van der Waals (vdW) materials are known for their intriguing physical properties, but their rational design and synthesis remain a great challenge for chemists. In this work, we successfully synthesized a new non-centrosymmetric oxide, i.e.

View Article and Find Full Text PDF

Unlocking new possibilities in ionic thermoelectric materials: a machine learning perspective.

Natl Sci Rev

January 2025

Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.

The high thermopower of ionic thermoelectric (-TE) materials holds promise for miniaturized waste-heat recovery devices and thermal sensors. However, progress is hampered by laborious trial-and-error experimentations, which lack theoretical underpinning. Herein, by introducing the simplified molecular-input line-entry system, we have addressed the challenge posed by the inconsistency of -TE material types, and present a machine learning model that evaluates the Seebeck coefficient with an of 0.

View Article and Find Full Text PDF

The ARID1A gene, frequently mutated in cancer, encodes the AT-rich interactive domain-containing protein 1A, a key component of the chromatin remodeling SWI/SNF complex. The ARID1A protein features a conserved DNA-binding domain (ARID domain) of approximately 100 residues crucial for its function. Despite the frequency of mutations, the impact on ARID1A's stability and contribution to cancer progression remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!