We investigated three calcium silicate-based sealers with respect to their chemical characterization, cytotoxicity, and attachment to RAW264.7 cells. BioRoot RCS (BR), Bio-C Sealer (BC), and Sealer Plus BC (SPBC) were assessed using Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence spectroscopy (XRF), and energy-dispersive X-ray spectroscopy (EDX) (n = 4) for elemental characterization, and using scanning electron microscopy (SEM) to evaluate cell morphology and adhesion. Cytotoxicity was determined at different dilutions (1:1, 1:2, and 1:5) using the succinate dehydrogenase activity (MTT assay). Statistical analysis was performed for normal distribution using the Shapiro-Wilk test and for homoscedasticity using Levene's test, and one-way ANOVA, Tukey's/Dunnett's post hoc tests for cell viability and XRF (α = 0.05). Calcium silicate hydrate and calcium hydroxide were detected by FTIR in all groups. EDX detected a higher calcium content for BR and SPBC and aluminum only in the premixed sealers. XRF detected the highest calcium release in BR ( < 0.05). The surface morphology showed irregular precipitates for all the sealers. SPBC at a 1:2 dilution resulted in the lowest cell viability compared to BR ( < 0.05) and BC ( < 0.05). The calcium silicate-based sealers produced a statistically significant reduction in cellular viability at a 1:1 dilution compared to the control group ( < 0.0001). All the sealers maintained viability above 70%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608491 | PMC |
http://dx.doi.org/10.3390/ma16206705 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!